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Abstract. Multi-hop reasoning has attracted wide attention for knowl-
edge graph (KG) completion since it can provide interpretable reason-
ing paths. Most prior multi-hop reasoning studies assume the KGs are
static with fixed entities. However, in real applications, KGs are often
dynamic since new entities will emerge continuously in the form of new
fact triplets. In this paper, we are particularly interested in the cold-start
scenario toward dynamic KGs to facilitate more practical multi-hop rea-
soning, which aims to explore the reasoning paths between emerging enti-
ties and existing entities. There are two challenging issues arising from
this scenario: i) lacking precise guidance since available information
for emerging entities is extremely limited in the cold-start scenario, ii)
lacking explicit path since the emerging entities and existing ones are
isolated. To address these issues, we propose a generation-based model,
namely SelfHier, to explore the reasoning paths by hierarchical guidance
and self-verification strategies. The hierarchical guidance strategy guides
the reasoning process using hierarchical fine-grained sub-relations and
coarse-grained clusters. The self-verification strategy constructs explicit
reasoning paths by supplementing some missing fact triplets. Experimen-
tal results prove that SelfHier performs well in the cold-start scenario on
dynamic KGs and also significantly outperforms existing multi-hop rea-
soning methods in the standard scenario on static KGs.

Keywords: Multi-hop Reasoning · Cold-start · Hierarchical
Guidance · Self-verification

1 Introduction

Knowledge graphs such as Freebase [1] and NELL [2] store fact triplets in the
form of (head entity, relation, tail entity), which benefit various knowledge-driven
applications. However, existing KGs suffer from serious incompleteness in real-
ity, which limits their practicability. Therefore, Knowledge Graph Completion
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Fig. 1. An example of multi-hop reasoning in the cold-start scenario.

(KGC) has been proposed to reason the missing fact triplets, such as predicting
the tail entity given the query head entity and relation.

For a long time in the past, embedding-based methods such as TransE [3],
RotatE [4], and ConE [5] have achieved excellent performance. However, the
drawbacks of these approaches are obvious since they reason in a black-box
manner and can not provide interpretable reasoning paths.

To realize the interpretability, Deeppath [6] formulates the KGC as a multi-
hop reasoning task. As Fig. 1 shows, given a query (Sam Altman, citizen of,
?), multi-hop reasoning methods try to predict the tail entity “America” with
a reasoning path. Most existing multi-hop reasoning works [7–10] adopt the
Reinforcement Learning (RL) framework to model the reasoning process as a
Markov Decision Process, where the agents walk on KGs to search the target
tail entities. Recently, SQUIRE [11] employs the generative framework to reason
the paths and missing fact triplets in an end-to-end fashion, which achieves
state-of-the-art (SOTA) performance.

Despite their effectiveness, existing multi-hop reasoning studies mainly focus
on reasoning over static KGs with fixed entities. However, in reality, the KGs
are essentially dynamic, and new entities will emerge continuously in the form
of new fact triplets. For instance, the NELL KG has been extracting new fact
triplets from the web since January 2010, with new entities emerging simulta-
neously. Completing the edges between emerging entities and existing entities is
crucial to the development of KGs, but it is not easy, especially when they are
isolated from each other. As Fig. 1 shows, the emerging entity “Sam Altman”
is isolated from existing entities, without direct or indirect interaction. In such
cases, reasoning a path between them becomes a cold-start scenario, as they are
unseen from each other during training. In this paper, we are particularly inter-
ested in the cold-start scenario toward dynamic KGs to facilitate more practical
multi-hop reasoning. Specifically, the cold-start scenario is set to explore inter-
pretable reasoning paths between emerging entities and existing entities that are
isolated from each other on dynamic KGs. Nevertheless, conducting multi-hop
reasoning in the cold-start scenario is not trivial due to the following challenges:

• lacking precise guidance. Since available information for emerging enti-
ties is extremely limited in the cold-start scenario, it is difficult to con-
struct precise guidance to handle those complex reasoning processes such
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as distinguishing semantically similar relations and eliminating entities with
unrelated attributes.

• lacking explicit paths. Since emerging entities and existing entities are iso-
lated, there is an absence of explicit paths on dynamic KGs that can connect
them. Hence, most prior methods are unable to reason a correct path due to
their reasoning process totally relying on existing edges.

To overcome the above challenges, we propose the generation-based model,
namely SelfHier, to explore the reasoning paths by hierarchical guidance and
self-verification strategies. The hierarchical guidance strategy guides the reason-
ing process by fine-grained sub-relations and coarse-grained clusters, which con-
tribute to distinguishing semantically similar relations and eliminating entities
with unrelated attributes, respectively. The self-verification strategy is proposed
to solve the absence of explicit reasoning paths by pre-exploring some missing
fact triplets to bridge the gap between emerging entities and existing entities.

In hierarchical guidance strategy, a relation is divided into multiple
fine-grained sub-relations with different semantics, and entities with similar
attributes are gathered into a coarse-grained cluster. The prediction of relations
and entities will be guided by the prediction of fine-grained sub-relations and
coarse-grained clusters since they are easier to distinguish and eliminate, respec-
tively. For instance, the “subpart of ” in (State of lllinois, subpart of, America)
and (youtube, subpart of, google product) show different semantics. After it is
divided into two sub-relations which describe the geographical relation and own-
ership relation, respectively, it will be more distinguishable from the relation
“ located within”. Furthermore, if the target entity is “America”, we should select
an entity in the cluster “Country” and eliminate those entities in “Company” and
“Person”.

In self-verification strategy, inspired by the behavior that humans always
verify whether their former reasoning process misses some steps by reasoning
once again on the same query, we imitate it to conduct the reasoning process
again on the former training query and try to find those missing fact triplets.
Specifically, the generation-based framework may generate some unknown fact
triplets as a step of reasoning paths since its selection space is unconstrained.
We argue that if these reasoning paths containing unknown fact triplets arrive at
the target tail entities with the highest probability, these unknown fact triplets
may be missing in KGs originally. Hence, we further extract these unknown fact
triplets to KGs to construct explicit reasoning paths.

We evaluate our model on both dynamic and static KGs. The experimental
results show that our model performs well in the cold-start scenario and even out-
performs existing methods in the standard scenario. Furthermore, the ablation
studies show the effectiveness of both hierarchical guidance and self-verification
strategies.

2 Related Work

Knowledge graph embedding methods [3–5,12,13] learn distributed representa-
tions of entities and relations from structure information, and further leverage
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score functions to measure the likelihood of each triplet. Despite their effective-
ness, embedding-based methods can not provide interpretable information.

Multi-hop reasoning is an emerging task for KGC, which aims to find the tar-
get tail entities with interpretable reasoning paths. Rule-based methods [14,15]
automatically induce logical rules from the KG and predict missing fact triplets
by matching queries to the rules. Although rule-based methods such as Any-
BURL [16] achieve remarkable performance, they are hard to generalize in prac-
tice due to the limitation of symbolic representation. RL-based methods model
the reasoning process as a Markov Decision Process (MDP), where the agent
walks on KGs to search the target entities. Deeppath [6] first adopts the RL
framework to search the reasoning paths and target relations given head enti-
ties and tail entities. MINERVA [7] proposes a more difficult and practical task
to find the target tail entities while given the relations and head entities. Fol-
lowing this work, most RL-based methods [9,10,16,17] are devoted to tackling
the sparse rewards problem or trying to design a more efficient policy network.
Recently, the generation-based method SQUIRE [11] introduces the generative
framework to find the target entities and reasoning paths in an end-to-end fash-
ion. By leveraging the rule-enhanced and iterative training strategy, SQUIRE
achieves current state-of-the-art performance. However, these methods focus on
static KGs and overlook the challenge of conducting multi-hop reasoning on
dynamic KGs. We are particularly interested in the cold-start scenario toward
dynamic KGs to facilitate more practical multi-hop reasoning and further design
an effective generation-based model SelfHier which achieves SOTA performance
in both the prior standard scenario and the cold-start scenario.

3 Methodology

Knowledge Graph. A KG is defined as a directed graph G = (E ,R), where
E and R denote the entity set and relation set, respectively. A KG G contains
a set of fact triplets defined as T = {(h, r, t)} ⊆ E × R × E , where h, r, and
t represent the head entity, the relation, and the tail entity, respectively. The
static KGs contain fixed entities with connectivity. The dynamic KGs contain
some emerging entities, which are isolated from existing entities.

Multi-hop Reasoning. Given a query (h, r, ?), multi-hop reasoning aims to
predict the target tail entity t through a generated n-hop reasoning path τ :
h

r1−→ e1
r2−→ e2 · · · rn−→ en, where ei and ri represent the entity and the relation

in the path τ . The last entity en in τ is treated as the predicted target tail
entity. In the standard scenario, the t is not isolated from h on static KGs. In
the cold-start scenario, the t is isolated from h on dynamic KGs, where they will
not belong to the emerging entities or existing entities simultaneously.

3.1 Model Framework

To tackle the problem of lacking precise guidance and explicit paths in the cold-
start scenario, we propose a generative model, namely SelfHier, of which the



Cold-Start Multi-hop Reasoning by Hierarchical Guidance 581

Fig. 2. SelfHier model overview. �: entity. �: cluster. �: relation. �: sub-relation.�: existing entity. �: emerging entity. −→: edges completed by self-verification. −→:
existing edge. (Color figure online)

overall framework is shown in Fig. 2. Apparently, SelfHier mainly consists of
three components: the backbone, the hierarchical guidance strategy, and the
self-verification strategy. The backbone module autoregressively generates the
reasoning path, which follows the pioneer generative method [11]. Based on the
backbone, the hierarchical guidance strategy is developed to guide the reasoning
process to distinguish semantically similar relations and eliminate entities with
unrelated attributes. Furthermore, the self-verification strategy is proposed to
construct explicit reasoning paths, by pre-exploring some missing fact triplets.

3.2 Backbone

The backbone is a generative model, as shown in Fig. 2 (a), which adopts the
classic encoder-decoder architecture. Inputting the query q = (<bos>, h, r) as
the source sequence, the Transformer encoder learns contextualized hidden rep-
resentation. Sequently, the MLP autoregressively decodes the reasoning paths τ
token by token. During training, we maximize the cross-entropy loss as follows:

L = −
∑

(q,τ)∈A

1
|τ |

|τ |∑

k=1

|V |∑

i=1

αi log p (i | q, τ<k) (1)

where A is the training set of all (q, τ) training pairs, τ<k denotes the former
k-1 tokens in τ , |τ | is the number of tokens in τ , |V | is the size of vocabulary V ,
αi is a label-smoothing hyperparameter to avoid overfitting, αi = ε for target
tokens, and αi = 1−ε

|V |−1 for other tokens, and ε ranges from 0 to 1.

3.3 Hierarchical Guidance

Guidance of Fine-Grained Sub-relations. Prior methods assume that the
semantics of various relations are different, while the different relations may be
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Fig. 3. Example of hierarchical guidance. (a) Distinguishing semantically similar rela-
tions by the guidance of fine-grained sub-relations. (b) Eliminating entities with unre-
lated attributes by the guidance of coarse-grained clusters.

semantically similar in reality. To distinguish those semantically similar relations
with overlapped representation, a relation is divided into multiple fine-grained
sub-relations by measuring their difference in context. To be specific, we use the
TransE [3] to learn the general relation representation r. The specific relation
representation r̂ in (h, r, t) can be calculated by r̂ = t − h since a correct
fact triplet should satisfy h + r = t in TransE. The cosine distance d between
the specific relation representation r̂ and the general relation representation r
is adopted to show the level of similarity between them. If the r in different
fact triplets have close distance d, they are similar in real semantics naturally.
For instance, the relation “subpart of ” in (Fairfax, subpart of, Virginia) and
(Mcallen, subpart of, Texas) has close d, where both of them emphasize the
geographical relationship. Oppositely, their d is far from the d of relation “subpart
of ” in (Micron, subpart of, Steven appleton), which emphasizes the ownership
relationship. For each relation ri, supposing the max and the minimal d in all
fact triplets containing ri is dmax and dmin, respectively. We split the section
[dmin,dmax] to M equal sub-sections, and the relation ri in specific fact triplet
is converted to its sub-relation sj when its d locate in j-th sub-section. For
simplicity, the M is pre-defined as a hyperparameter, while it can be dynamically
adjusted for different relations, which we leave for future research. For further
reasoning among sub-relations, we convert the (q, τ) ∈ A to (q, τs) ∈ As as
follow:

τ : r1, e1, r2, · · · , en,<eos> =⇒ τs : s1, e1, s2, · · · , en,<eos> (2)

where the relations ri are converted to their corresponding sub-relations sj .
As shown in Fig. 3 (a), the (q, τ) ∈ A are used to train Encoderr-Decoderr

while the (q, τ s) ∈ As are used to train Encoders-Decoders. The particular
dimensions of their output embeddings correspond to the probability of the
relations and sub-relations, respectively. For the output of Decoders, we sum the
probabilities of those sub-relations divided from the same relation, and further
align the probabilities of corresponding relations output by Decoderr with them.
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The process is depicted in Fig. 3 (a), and the cosine distance loss is maximized
to align their probabilities as follows:

Lr↔s = − ∑
(q,τ)∈A

(q,τs)∈As

∑|τ |/2
k=1 d

(
p(τ2k−1 | q, τ<2k−1), p(τ

s
2k−1 | q, τs

<2k−1) · Es→r

)

(3)

where Es→r is a mapping matrix set to map the probability of the sub-relations
to their corresponding relations. Note that we only align them in 2k-1-th step,
in which we should generate the relation. The cosine distance is calculated as
follows:

d(X,Y) = 1 − X·Y
‖X‖‖Y‖ = 1 −

∑n
i=1 xi × yi√∑n

i=1(xi)2 +
√∑n

i=1(yi)2
(4)

Guidance of Coarse-Grained Clusters. To eliminate entities with unrelated
attributes, we formulate the coarse-grained cluster by gathering the entities with
similar features together. Those entities belonging to the same cluster always
share similar attributes. For instance, if the target entity is “James Cameron”,
we should select an entity in the cluster “Person” and eliminate those entities in
“Company” and “Location”. Specifically, we learn the embeddings of entities by
TransE, then use the K-means [18] algorithm to obtain K clusters, where the K
is a pre-defined hyperparameter. For reasoning among clusters, we convert the
(q, τ) ∈ A to (qc, τ c) ∈ Ac as follow:

q : <bos>, h, r =⇒ qc : <bos>, ch, r (5)

τ : r1, e1, r2, · · · , en,<eos> =⇒ τ c : r1, c1, r2, · · · , cn,<eos> (6)

where the entities h and ei are converted to their corresponding clusters ch and
cj , respectively.

As shown in Fig. 3 (b), the (q, τ) ∈ A are used to train Encodere-Decodere

while the (qc, τ c) ∈ Ac are used to train Encoderc-Decoderc.
The particular dimension of their output representation corresponds to the

probability of the entities and clusters. As the process when aligning the relations
to their corresponding sub-relations, the cosine distance loss is maximized to
align the probabilities of the entities with their corresponding clusters as follows:

Lc↔e = −
∑

(q,τ)∈A
(qc,τc)∈Ac

∑|τc|/2
k=1 d

(
p(τ c

2k | qc, τ c
<2k), p(τ2k | q, τ<2k) · Ee→c

)
(7)

where Ee→c is a mapping matrix set to map the probability of the entities to
their corresponding clusters. Note that we only align them in 2k-th step, in which
we should generate the entity.

Ensemble of Coarse-Grained Clusters and Fine-Grained Sub-relations.
To ensemble the hierarchical guidance during training, we also align the output
of Decoders and Decoderc at each step as follows:

Ls↔c = −
∑

(qc,τc)∈Ac

(q,τs)∈As

∑|τc|
k=1 d

(
p(τ c

k | qc, τ c
<k), p(τ

s
k | q, τ s

<k) · Ee→c · Es→r

)

(8)
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Finally, the overall loss of our model is:

L = Lr + Le + λ(Ls + Lc) + β(Lr↔s + Lc↔e + Ls↔c) (9)

where the Lr,Le,Ls,Lc are losses of generating reasoning paths, which are for-
mulated as Eq. 1, the Lr↔s,Lc↔e,Ls↔c are the hierarchical guidance losses, the
λ and β are hyperparameters to control the loss ratio.

To ensemble the hierarchical guidance during generating, the Encoderr-
Decoderr and Encodere-Decodere alternately generate the entities and relations.
As shown in Fig. 4, the Encodere-Decodere focuses on generating the next rela-
tion since it is guided by sub-relations, while the Encoderr-Decoderr is devoted
to generating the next entity since it is guided by clusters. In addition, the
Encoderr-Decoderr and Encodere-Decodere also generate the paths alone, and
the final tail entity is voted by the above three generative manners.

Fig. 4. Alternately decoding strategy during generating.

3.4 Self-verification

To solve the problem that there is no explicit path between emerging entities and
existing ones, an intuitive solution is pre-completing some missing fact triplets to
bridge this gap before conducting the multi-hop reasoning. However, it is imprac-
tical for previous KGC methods since they need to know two elements of the
missing fact triplet before completing it. Inspired by the behavior that humans
always verify whether their former reasoning process misses some steps by rea-
soning once again on the same query, we propose the self-verification strategy
to reason again on the former training query to find those missing fact triplets,
which does not need to know two elements of it before completing it.

Specifically, the generative framework may generate some unknown fact
triplets in reasoning paths since its selection space is unconstrained. We argue
that if these reasoning paths arrive at the target tail entities with the highest
probability, these unknown fact triplets may be missing for KGs from the begin-
ning, which contribute to constructing explicit reasoning paths. Specifically, we
first train the model on the training set (q, τ) ∈ A. Then, inputting the same
query q ∈ A to the model once again, the generated paths which arrive at the
target tail entity with the highest probability are picked. We collect the fact
triplets in these paths which not exist in the original KG T and filter those fact
triplets whose frequencies are less than a pre-defined threshold T . These filtered
fact triplets T new are added to the KGs to construct more explicit paths.
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4 Experiments

4.1 Experimental Setup

Experimental Knowledge Graphs. In the standard scenario, we conduct
experiments on four static KGs, including FB15K237 [19], NELL9951 [6],
FB15K23720 and NELL23K [8]. The first two are considered dense KGs, while
the latter two are sparse KGs. Additionally, to formulate the cold-start sce-
nario, we carefully construct some dynamic KGs by following these rules strictly:
Firstly, keeping the connectivity of the existing entities. Secondly, ensuring the
disconnectedness between emerging entities and existing entities. Thirdly, the
head entity and tail entity will not belong to emerging entities or existing enti-
ties simultaneously during testing. A detailed overview of the KGs is provided in
Table 1. For instance, the NELL23K-40% denotes that split 40% emerging enti-
ties and retain 60% existing entities on NELL23K. Furthermore, the split ratio
of NELL23K is different from FB15K23720 due to the connectivity of existing
entities will be broken when setting a lower ratio in NELL23K.2

Table 1. Dataset statistics of different KGs.

KGs type KGs Existing Relations Facts Mean Emerging
Entities degree Entities

Static FB15K237 14,505 237 272,115 18.76 0
NELL995 62,706 198 117,937 1.88 0
FB15K23720 13,166 237 54,423 4.13 0
NELL23K 22,925 200 25,445 1.11 0

Dynamic FB15K23720-50% 6,583 237 38,013 3.46 4,393
FB15K23720-20% 10,532 237 50,144 4.31 1,100
FB15K23720-10% 11,849 237 52,938 4.29 502
NELL23K-60% 9,170 200 20,772 1.07 10,128
NELL23K-50% 11,462 200 22,440 1.09 9,033
NELL23K-40% 13,755 200 24,345 1.111 8,211

Baselines. For embedding-based models, we compare against TransE [3], ConvE
[13], RotatE [4], TuckER [12], and ConE [5]. As for multi-hop reasoning models,
we compare against MINERVA [7], MultiHopKG [17], AnyBURL [16], DacKGR
[8], RuleGuider [9], CURL [10], and current SOTA model SQUIRE [11].

Evaluation Protocol. We follow the same evaluation protocol as most multi-
hop reasoning methods [7,8,11]. Specifically, we report the results in terms of
the Hit@1, 3, and 10 metrics, as well as the mean reciprocal rank (MRR) score,
for the link prediction task.
1 We use the same version as [11] considering the inconsistent split in previous studies.
2 The data and code are available at: https://github.com/NLPWM-WHU/SelfHier.

https://github.com/NLPWM-WHU/SelfHier
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Implementation Details. We utilize the rule-based method AnyBURL [16] to
construct ground-truth reasoning paths as prior generation-based method [11]
do. The Adam optimizer [20] is used for training our model. For evaluation,
we follow the same process as [11] which involves using beam search and self-
consistency [21] to decode the reasoning paths and target entities. The models
are trained with five different seeds, and the results are averaged.

Table 2. Experiment results in the standard scenario. Bold: the best score of multi-hop
reasoning models. Underlined: the second-best score of multi-hop reasoning models. †:
the results are retrieved from [11]. ‡: the results reported by our reproduction based
on their released code and the best hyperparameters. We reproduce CURL since its
performance is not reported in most KGs previously. We also reproduce SQUIRE for
the significance test. The reproduction results of SQUIRE are almost the same as those
in their paper. ∗: the improvements of our SelfHier over the best baseline is significant
at p < 0.01.

Model FB15K237 NELL995 FB15K23720 NELL23K
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 42.5 32.0 47.5 63.5 37.1 20.9 47.3 65.4 26.3 17.8 28.8 43.4 17.9 7.6 20.8 37.9
ConvE† 43.8 34.2 48.3 62.7 54.2 44.9 59.4 70.9 26.4 18.7 28.4 42.2 27.9 19.3 30.1 46.7
RotatE† 42.6 32.1 47.4 63.5 51.3 41.1 57.0 70.8 26.5 18.5 28.6 43.0 21.7 14.1 23.2 36.8
TuckER† 45.1 35.7 49.5 63.5 51.1 42.2 55.6 68.2 24.6 17.8 26.1 38.4 20.7 14.3 22.4 33.8
ConE† 44.6 34.5 49.0 64.5 54.3 44.8 60.2 71.5 27.4 19.3 29.8 43.7 23.4 15.8 24.9 40.0
MINERVA† 27.5 19.9 30.6 43.3 39.1 29.3 44.9 57.5 12.3 7.0 13.3 23.6 15.1 10.1 15.9 24.7
MultiHopKG† 40.7 32.7 44.3 56.4 46.7 38.8 51.2 60.9 23.1 16.7 25.0 36.1 17.8 12.4 18.8 29.7
AnyBURL† - 30.0 40.5 54.4 - 38.9 52.1 62.8 - 15.9 24.0 35.9 - 14.0 20.3 29.2
RuleGuider† 38.7 29.7 42.8 56.3 41.7 34.4 47.6 58.2 9.4 4.2 9.4 21.0 11.2 3.0 14.0 27.3
DacKGR† 34.7 27.4 38.2 49.3 42.1 34.7 46.4 55.4 24.6 18.0 27.0 38.6 19.7 13.3 21.1 33.7
CURL‡ 27.6 20.1 30.8 42.8 40.1 30.2 45.9 58.7 13.5 8.0 14.6 24.9 16.2 11.0 17.1 26.0
SQUIRE‡ 43.2 34.1 47.5 61.5 51.9 43.5 57.0 68.1 25.1 17.9 27.7 40.5 24.5 16.6 26.8 41.3
SelfHier(ours) 47.4∗ 38.8∗ 51.6∗ 64.0∗ 56.7∗ 49.3∗ 61.0∗ 71.0∗ 28.8∗ 21.0∗ 31.1∗ 44.9∗ 28.6∗ 20.2∗ 30.8∗ 46.6∗

4.2 Main Results

Table 2 presents the results of our SelfHier model and the baseline models in the
standard scenario, while Table 3 displays the comparison results in the cold-start
scenario.

Our SelfHier model achieves new state-of-the-art performance in the standard
scenario, outperforming prior multi-hop reasoning models with a significant mar-
gin. This demonstrates that SelfHier is highly effective in conducting multi-hop
reasoning on static KGs with fixed entities. Compared to the best baseline model,
SelfHier achieves improvements of 9.7%, 9.2%, 14.7%, and 16.7% in MRR, and
13.8%, 13.3%, 17.3%, and 21.7% in Hit@1 across the four static KGs. Addition-
ally, our model performs better than embedding-based models in most metrics
for all static knowledge graphs, indicating that SelfHier can provide superior
performance while retaining interpretability in the standard scenario.

In the cold-start scenario, we compare SelfHier with SQUIRE and DacKGR
models, as other models are unable to handle this scenario entirely. SelfHier
outperforms the baselines significantly on all dynamic KGs, regardless of the
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Table 3. Experiment results in the cold-start scenario. The markers are same as those
in Table 2.

Model FB15K23720-10% FB15K23720-20% FB15K23720-50%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DacKGR 18.1 15.6 19.2 23.4 16.6 14.2 18.0 21.1 14.5 12.1 15.4 19.3
SQUIRE 19.4 14.5 22.3 28.6 18.5 14.2 20.1 27.2 17.1 12.2 18.7 27.4
SelfHier(ours) 22.4∗ 18.7∗ 23.2∗ 30.4∗ 21.2∗ 17.0∗ 22.8∗ 28.7∗ 20.3∗ 15.5∗ 21.6∗ 30.1∗

Model NELL23K-40% NELL23K-50% NELL23K-60%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DacKGR 14.0 8.8 14.9 23.5 13.2 8.2 14.8 22.5 11.2 6.0 12.4 21.0
SQUIRE 15.3 10.8 16.8 23.7 14.2 10.2 14.3 22.7 13.5 7.9 14.3 24.3
SelfHier(ours) 19.2∗ 12.4∗ 22.4∗ 31.4∗ 18.0∗ 11.7∗ 19.7∗ 29.5∗ 17.7∗ 11.6∗ 19.1∗ 29.3∗

proportion of emerging entities. Notably, in the most stringent cold-start scenario
of FB15K23720-50% and NELL23K-60% knowledge graphs, SelfHier achieves
18.7% and 31.1% improvement in MRR, and 27.0% and 46.8% improvement in
Hit@1, respectively, compared to the best baseline model. These improvements
are even more significant than their corresponding standard scenario.

In conclusion, our SelfHier model is a practical and widely-adaptive method
that performs well not only in the cold-start scenario but also achieves state-of-
the-art performance in the standard scenario.

Table 4. Ablation studies in the standard scenario. “w/o”: removing the correspond-
ing strategy. “w/o all strategies”: removing hierarchical guidance and self-verification
strategies simultaneously. Bold: the best score among different variants.

Model Variants FB15K237 NELL995 FB15K23720 NELL23K
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SelfHier 47.4 38.8 51.6 64.0 56.7 49.3 61.0 71.0 28.8 21.0 31.1 44.9 28.6 20.2 30.8 46.6
w/o sub-relations 46.3 37.8 50.5 62.9 55.0 47.6 59.0 69.5 27.5 19.9 29.8 43.8 26.9 19.2 29.0 43.1
w/o clusters 46.5 37.9 50.8 63.3 54.9 47.6 58.4 69.5 27.4 19.8 29.9 43.7 26.9 19.1 29.2 43.2
w/o self-verification 43.5 34.5 47.8 61.7 52.7 44.2 57.4 68.6 26.3 18.9 28.8 41.9 27.8 19.3 30.4 45.9
w/o all strategies 41.5 32.7 45.8 59.4 50.6 42.2 55.6 66.4 24.4 17.3 27.2 39.2 23.5 15.7 25.9 39.4

4.3 Ablation Studies

We conduct ablation studies on the hierarchical guidance and self-verification
strategies, and the results on the standard and cold-start scenarios are shown
in Table 4 and Table 5, respectively. These results indicate that all strategies
are critical to improving the performance of our model in both standard and
cold-start scenarios. We also observe that the score in Hit@10 slightly increases
on some cold-start scenarios, which may be due to the guidance of clusters
constraining the diversity of entities severely. Furthermore, incorporating both
coarse-grained clusters and fine-grained sub-relations into the guidance is ben-
eficial to the overall performance of our model. Although the performance is
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significantly impacted when both the self-verification and hierarchical guidance
strategies are removed, the model still outperforms the best RL-based method,
demonstrating the effectiveness of the generation-based framework for conduct-
ing multi-hop reasoning, and its potential for further research in the community.
Overall, our ablation studies demonstrate the effectiveness of both hierarchical
guidance and self-verification strategies.

Table 5. Ablation studies in the cold-start scenario. The markers are same as those
in Table 4.

Model Variants FB15K23720-10% FB15K23720-20% FB15K23720-50%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SelfHier 22.4 18.7 23.2 30.4 21.2 17.0 22.8 28.7 20.3 15.5 21.6 30.1
w/o sub-relations 21.5 17.5 22.6 30.1 20.5 16.8 21.4 28.0 19.4 14.9 20.5 28.2
w/o clusters 21.3 17.5 22.3 30.7 20.6 16.2 22.6 28.8 19.2 14.6 20.7 28.4
w/o self-verification 20.7 17.2 21.1 28.6 19.3 14.7 21.1 28.2 19.2 14.8 20.3 28.1
w/o all strategies 19.2 14.8 19.6 28.0 17.6 13.1 18.9 27.7 17.0 12.4 18.1 27.1

Model Variants NELL23K-40% NELL23K-50% NELL23K-60%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SelfHier 19.2 12.4 22.4 31.4 18.0 11.7 19.7 29.5 17.7 11.6 19.1 29.3
w/o sub-relations 17.8 10.3 21.1 29.6 17.1 10.7 19.5 27.7 16.2 10.1 18.7 27.4
w/o clusters 16.7 9.5 18.6 29.9 16.4 9.8 18.2 29.7 16.1 9.4 18.7 28.7
w/o self-verification 18.7 11.9 21.4 31.4 17.1 10.7 19.1 29.1 16.8 10.7 18.4 28.4
w/o all strategies 14.8 8.0 16.0 28.9 13.5 8.2 14.6 23.6 13.2 7.2 14.7 24.9

4.4 Interpretability Evaluation

Table 6. Interpretability evaluation. The inter-
pretability score is the sum score of all reasoning
paths, and the reasonable rate is the ratio of those
paths gaining 1 score.

Model MultiHopKG SQUIRE SelfHier
Interpretability score 14.0 24.5 29.5
Reasonable rate 5.0% 10.0% 13.0%

Following [11,22], we man-
ually annotate the interpretabil-
ity score for paths generated
by MultiHopKG, SQUIRE,
and SelfHier model. We ran-
domly select 100 queries and
choose the generated reason-
ing path with the highest
probability that leads to the gold tail entity. Then, two experts score it alone
based on whether it is convincing to them, where 1, 0.5, and 0 scores for paths
that are reasonable, partially reasonable, and unreasonable, respectively. If there
is an inconsistency of their score, another expert who is more familiar with this
task makes the decision finally3 The evaluation result on FB15K237 is reported
in Table 6. We observe that SelfHier achieves higher scores on both metrics,
suggesting that our model can generate more reasonable paths and facilitate
explainable multi-hop reasoning.
3 The three experts are well-versed in this task, and they are blind to which model

generates the path when scoring. The full annotation results are available at https://
github.com/NLPWM-WHU/SelfHier/blob/main/annotation.csv.

https://github.com/NLPWM-WHU/SelfHier/blob/main/annotation.csv
https://github.com/NLPWM-WHU/SelfHier/blob/main/annotation.csv
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Table 7. Coverage statistics.
Model Unknown Num Covered Num Cover Ratio
SQUIRE 11891 1236 10.4%
SelfHier 13502 3717 27.5%

Additionally, we con-
duct a study on the
dependability of unknown
fact triplets within the rea-
soning paths generated by
SelfHier and SQUIRE. To achieve this, we train them on FB15K23720 KG and
collect fact triplets that are not present in it but are generated during the rea-
soning process. We evaluate whether these fact triplets are included in the more
comprehensive FB15K237 KG. The coverage statistics are presented in Table 7,
demonstrating that our SelfHier model is capable of generating more reliable
fact triplets compared to SQUIRE.

4.5 Model Complexity

Fig. 5. Model complexity comparison.

To investigate the model com-
plexity, we compare the time-
consuming and memory-usage
between MultiHopKG, SQUIRE,
and our SelfHier model. Firstly,
we measure the training time
across graph sizes ranging from
5×104 to 25×104 nodes. As
shown in Fig. 5, more time will be
consumed by our SelfHier model
compared to SQUIRE, but less
compared to MultiHopKG. The seq2seq architecture of our model can avoid the
iterative trial-and-error process of reinforcement learning methods, resulting in
reduced time consumption. Furthermore, our model is more effective in memory-
usage. Overall, our model achieves a good trade-off between performance and
complexity.

4.6 Case Study

As Table 8 shows, we analyze two cases in the standard and cold-start scenarios,
respectively. For each scenario, we choose the reasoning paths at Hit@1 pre-
dicted by the top-3 best models for comparison. Given Query1 in the standard
scenario, MultiHopKG and SQURIE struggle to distinguish those semantically
similar relations and eliminate entities with unrelated attributes, while SelfHier
can reason a path toward the target tail entity correctly since the hierarchichal-
guidance is equipped to solve the dilemma. Given Query2 in the cold-start
scenario, the existing entity “Brooklyn Dodgers” is isolated from the emerging
entity “Baseball ”. DacKGR and SQUIRE not only have trouble in distinguishing
semantically similar relations and eliminating entities with unrelated attributes
due to the lack of precise guidance, but are also troubled by the lacking of an
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explicit path. However, our self-verification can pre-explore the edge “team plays
against” between “Brooklyn Dodgers” and “Colorado Rochies”, which merges the
gap between them. Overall, our SelfHier is more effective in both standard and
cold-start scenarios.

Table 8. Case study. −→: the edge completed by self-verification. ���: the edge com-
pleted by DacKGR or SQUIRE during reasoning. −→: the edge existing in KGs.

Standard Query1: (U.K, contains, ?)=⇒ Target1: Borough of Chesterfield Prediction

MultiHopKG: U.K contains−→ England contains−→ University of Sheffield ✗

SQUIRE: U.K at location−1
−→ England contains−→ Greater London

contains��� River Thames ✗

SelfHier: U.K contains−→ England at location−1
−→ Borough of Chesterfield �

Cold-start Query2: (Brooklyn Dodgers, team plays sport, ?)=⇒ Target2: Baseball Prediction

DacKGR: Brooklyn Dodgersteam home stadium−→ Ebbets Field
proxy for−1

��� Chicago ✗

SQUIRE: Brooklyn Dodgers
team plays sport��� Football ✗

SelfHier: Brooklyn Dodgers
team plays against−→ Colorado Rockies

team plays sport−→ Baseball �

5 Conclusion

In this paper, we are interested in the cold-start scenario toward dynamic KGs
to facilitate more practical multi-hop reasoning. To solve the problem of lacking
precise guidance and explicit paths, we design hierarchical guidance and self-
verification strategies. The hierarchical guidance can distinguish semantically
similar relations and eliminate entities with unrelated attributes by the guid-
ance of fine-grained sub-relations and coarse-grained clusters. Furthermore, self-
verification is able to construct more explicit reasoning paths by pre-exploring
some missing fact triplets. Finally, the experiments demonstrate that our SelfHier
model achieves SOTA performance in both standard and cold-start scenarios.
Ethical Statement. The data and code used in our experiments are all open-source
resources for research purposes. The paper is free from copyright or other intellectual
property issues.
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