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Abstract

Large language models (LLMs) have achieved
satisfactory performance in counterfactual gen-
eration. However, confined by the stochas-
tic generation process of LLMs, there often
are misalignments between LLMs and humans
which hinder LLMs from handling complex
tasks like relation extraction. As a result, LLMs
may generate commonsense-violated counter-
factuals like ‘eggs were produced by a box’.

To bridge this gap, we propose to mimick the
episodic memory retrieval, the working mech-
anism of the human hippocampus, to align
LLMs’ generation process with that of humans.
In this way, LLMs can derive experience from
their extensive memory, which keeps in line
with the way humans gain commonsense. We
then implement two central functions in the hip-
pocampus, i.e., pattern separation and pattern
completion, to retrieve the episodic memory
from LLMs and generate commonsense coun-
terfactuals for relation extraction. Experimen-
tal results demonstrate the improvements of our
framework over existing methods in terms of
the quality of counterfactuals1.

1 Introduction

Generating counterfactual augmented data to mit-
igate spurious correlations in neural networks is
a rising trend in recent years (Wen et al., 2022;
Zhang et al., 2023). The counterfactual is usually
generated by flipping the label of an instance with
minimal editing (Kaushik et al., 2019). Large lan-
guage models (LLMs) (OpenAI, 2022, 2023) are
proven to be proficient in generating counterfactu-
als for coarse-grained tasks (Ross et al., 2021; Wen
et al., 2022) such as sentiment analysis and natu-
ral language inference. However, confined by the
inherent stochastic generation process, LLMs con-
front challenges when generating counterfactuals

∗Corresponding author.
1The code and data used in the experiment are available at:

https://github.com/NLPWM-WHU/PSPC.

Original: eggs  were moved into  a box.      
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Figure 1: A comparison of the counterfactual generation
process by davinci-002 (a) and that by humans (b). The
words in orange and blue denote entities and causal
term, respectively.

for complex tasks like relation extraction (RE) (Li
et al., 2023b) due to misalignments between LLMs
and humans. Specifically, LLMs may disregard
the commonsense constraint (Miao et al., 2023)
between entities, resulting in the deviation of coun-
terfactuals from real-world scenarios. As shown in
Fig. 1 (a), the counterfactual generated by davinci-
002 violates commonsense because ‘eggs’ cannot
be produced by a ‘box’.

In contrast to the stochastic process, when hu-
man beings engage in counterfactual thinking,
the process could be activated by either a past
event from episodic memory or a causal sys-
tem from semantic memory (Nyhout and Ganea,
2019). Neuroscientists believe that the hippocam-
pus supports core computations and representa-
tions of episodic memory systems (Knierim and
Neunuebel, 2016). Moreover, two complementary
computations–pattern separation (PS) and pat-
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tern completion (PC)–are viewed to be central to
the function of the hippocampus (Kumaran et al.,
2016), where PS refers to mnemonic discrimina-
tion of similar experiences and PC retrieves holistic
experiences given a clue. For example, when we
reason potential relations between ‘eggs’ and ‘box’,
we initially retrieve a common scenario ‘take out
eggs from a box for cooking’ from our episodic
memories (Tulving, 2002). We then uncover the
potential relation ‘entity-origin’ between two en-
tities, as shown in Fig. 1 (b). Since the process is
controlled by our past experiences, the generated
counterfactual naturally follows commonsense.

In view of the fundamental difference, we pro-
pose to align LLMs’ relation discovery process
with that of humans by mimicking the neuromor-
phic mechanism in the human hippocampus, to
generate commonsense counterfactuals for rela-
tion extraction. To this end, we realize the Pattern
Separation (PS) and Pattern Completion (PC) func-
tions to retrieve episodic memory from LLMs.
Specifically, we first perform PS by dividing enti-
ties with their typical attributes, e.g., ‘Form’, ‘Us-
age’, ‘Purpose’. We then perform PC by pairing
the attributes of two entities and use the combined
attribute as the clue to recall the complete scenario,
e.g., ‘eggs Usage: food’ and ‘box Purpose: pre-
serve’ retrieve the scenario of ‘take out eggs from
the box for cooking’. We finally implement PS and
PC in LLMs using in-context learning and chain-
of-thought techniques.

We validate our proposed framework with
both data augmentation and human evaluation ap-
proaches on three RE datasets. Experimental re-
sults demonstrate that with the assistance of an
episodic memory retrieval mechanism, the coun-
terfactual generation capability of the LLMs has
surpassed current mainstream methods. The main
contributions of this work include:

• We introduce a neuromorphic mechanism to
align LLMs with humans during the counter-
factual generation process, which is the first
attempt towards this direction.

• We develop two functions, i.e., pattern sep-
aration and pattern completion, to realize
this mechanism for generating commonsense
counterfactuals for the relation extraction task.

• We extensively evaluate our framework on
three typical RE datasets. The results prove
the significantly increased performance and
the quality of the generated counterfactuals.

2 Related Work

Generating counterfactual for data augmen-
tation is proven to be simple and effective in
mitigating shortcut learning in deep neural net-
works (Kaushik et al., 2019). Researches along this
line in natural language understanding focus on sen-
timent classification or natural language inference
tasks (Yang et al., 2021; Chen et al., 2021; Robeer
et al., 2021; Ross et al., 2021; Wen et al., 2022),
for which the label flipping targets are determin-
istic, i.e., from positive to negative, or vice versa.
When generating counterfactuals for relation ex-
traction (Zhang et al., 2023; Li et al., 2023b), the la-
bels are just the relations with many choices, and an
arbitrary relation between two entities may violate
the commonsense. A recent method CCG (Miao
et al., 2023) takes the commonsense constraint into
account. However, CCG is a small language model
based approach and it relies on external knowledge
to keep consistency with commonsense. In con-
trast, our work is LLM-based and we make the first
attempt to derive commonsense from LLMs them-
selves by the alignment of the generation process.

Guiding LLMs with prompting engineering
for complex tasks is becoming a hot topic recently.
Existing prompting methods can be roughly catego-
rized into three lines: divide and conquer approach,
self-reflection, and role-playing. The approaches
based on chain-of-thought (Wei et al., 2022; Yao
et al., 2022; Shinn et al., 2023; Yao et al., 2023;
Qi et al., 2023) belong to the first line. They solve
complex reasoning problems by generating inter-
mediate reasoning steps. The approaches along
the second line (Shinn et al., 2023; Huang et al.;
Madaan et al., 2023) correct their previous outputs
through self-feedback or external feedback. Lastly,
the approaches along the third line (Li et al., 2023a;
Xu et al., 2023; Wang et al., 2023) assign specific
roles to LLMs based on task requirements, thus
constraining their output behaviors. It is worth not-
ing that our proposed method, which mimics the
working mechanism of the hippocampus, is a new
line totally different from all existing ones.

3 Our Proposed Neuromorphic Method

This section presents our proposed method, includ-
ing the episodic memory retrieval (EMR) mech-
anism and its pattern separation (PS) and pattern
completion (PC) functions, along with the specific
implementation details on LLMs.
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Figure 2: Schematic comparison between the standard pipeline of exiting methods (a) and our episodic memory
retrieval based pipeline (b) for RE counterfactual generation.

3.1 Problem Definition
LetX = {(xi = (ei, ci), yi)} be the dataset, where
xi ∈ X is the i-th sentence containing a known en-
tity pair ei = (e1i , e

2
i ) and the unknown causal term

ci which determines the state between entities, and
yi ∈ Y is the corresponding relation between two
entities e1i and e2i . Given a sentence xi, the relation
extraction (RE) task aims to extract the relation yi,
and RE counterfactual generation aims to generate
x̂i = ((ei, ĉi), ŷi), where ĉi ̸= ci, ŷi ̸= yi, i.e.,
altering the causal term to change the relation.

The process of existing RE counterfactual gener-
ation methods (Zhang et al., 2023; Li et al., 2023b;
Miao et al., 2023) all adopt a standard pipeline with
following three steps, as shown in Fig. 2 (a).

(1) Causal term identification:

ci = ϕ(xi, ei, yi), (1)

where ϕ is a strategy for recognizing the causal
term ci from the sentence xi. Since this step is not
the focus of our work, we follow the one used in
(Li et al., 2023b), refer to Appendix A.4.

(2) Potential relation discovery:

ŷi = σ(xi, ei), (ŷi ̸= yi), (2)

where σ is a strategy to find all potential relations
ŷi which is suitable for the entity pair ei.

(3) Causal term replacement:

x̂i = ρ((ei, ĉi), ŷi), (ĉi ̸= ci), (3)

where ρ is an operation to substitute ci with a
proper ĉi such that the original label yi can be
changed into a reasonable ŷi. Note the meaning
of the commonsense constraint2 in the RE coun-
terfactual generation task is twofold, i.e., both the
causal term ĉi is proper and the flipped label ŷi is
reasonable for the entity pair ei.

2We provide detailed causal analysis in Appendix C.

For coarse-grained counterfactual generation
tasks like sentiment analysis, they just need to as-
sign an opposite label to the original sample. Their
focus is to find and replace ci with ĉi, which is
much easier. For example, given ‘The movie is
wonderful’ with a ‘positive’ label, a counterfactual
could be ‘The movie is bad’ with a ‘negative’ label.

The RE counterfactual generation task is more
challenging since there are a lot of labels, e.g.,
42 relations on TACRED, and causal terms are
closely related to two entities. For example, given
‘eggs were moved into a box’, the counterfactual
‘eggs were produced by a box’ with the ‘product-
producer’ label is wrong because the causal term
‘produced by’ is not suitable for ‘eggs-box’.

Thanks to the powerful generation capability, an
LLM like ChatGPT (OpenAI, 2022) can perform
the causal term replacement well. However, given
‘cheese is flowed into food banks’, ChatGPT may
produce a counterfactual like ‘cheese is donated to
food banks’ with the ‘content-container’ relation,
which is still wrong because ‘food banks’ cannot
serve as the container, and an appropriate relation
is ‘entity-destination’.

In light of this, we focus on the second step of
the potential relation discovery to meet the com-
monsense constraint. To this end, we propose to
incorporate the episodic memory retrieval (EMR)
mechanism into the pipeline to align the generation
process of LLMs with that of humans, as shown in
Fig. 2 (b). The process can be formalized as:

si = EMR(ei,Mllm), (4)

ŷi =Mllm(ei, si), (ŷi ̸= yi), (5)

where EMR is the neuromorphic mechanism to re-
trieve the episodic memory si from a LLM that is
highly correlated with the entity pair ei, andMllm

further changes the original label yi for the entity
pair ei based on si.
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Example:

Input: <e1> eggs </e1> are moved into a <e2> box </e2>
Entities: eggs, box

Relation: entity-destination

(a) PS and PC Functions

Deconstruct entities: based on the attributes of the entities, "eggs" can be deconstructed 

into the several primary properties: form: fragile, usage: food, purpose: product; "box" 

can be deconstructed into the several primary properties: form: container, usage: package 

, purpose: preserve.

Reconstruct the first scenario:  based on the "form: fragile" property of "eggs" and  the 

"usage: package" property of "box", "eggs" should be moved into "box" to  prevent them 

from breaking, hence we can reconstruct the scenario: protection purpose: put eggs into box.

Reconstruct the second scenario: based on the "purpose: product" property of "eggs"  and 

the "form: container" property of "box", "eggs" should be contained in "box" for preservation, 

hence we can reconstruct the scenario: preservation purpose: eggs are kept in box.

Reconstruct the third scenario: based on the "usage: food" property of "eggs" and  the 

"purpose: preserve" property of "box", "eggs" should be taken out from "box" before making 

food, hence we can reconstruct the scenario: consumption purpose: take out eggs from box.

Entity-Destination Content-Container Entity-Origin

Identify decisive scenario: the first scenario "protective purpose: put eggs into box" 

contributes the most to the original relation "entity-destination".

(b) PS and PC Implementations in LLMs

Pair the properties between "eggs" and "box" to reconstruct three reasonable scenarios:

Uncover potential relation: if we focus on another promising scenario "preservation 

purpose: eggs are kept in box"...... the commonsense relation is "content-container".

Figure 3: An illustration example of pattern separation (PS) and pattern completion (PC) functions (a) and their
implementations in LLMs (b).

3.2 Retrieving Episodic Memory from
Hippocampus

Episodic memory enables human beings to remem-
ber past experiences (Tulving, 2002). The funda-
mental property of episodic memory is to store and
retrieve the memory of a particular single event
involving an association between items such as
the place and the object (Rolls, 2013). Therefore,
episodic memory binds together the diverse co-
occurring items that make up the specific events
of our lives (Ngo et al., 2021). The hippocampus
supports core computations and representations of
episodic memory systems. Two complementary
computations–pattern separation (PS) and pat-
tern completion (PC)–are viewed to be central to
the function of the hippocampus for storing and
retrieving details of specific experiences (Kumaran
et al., 2016).

Accurate episodic memory requires remember-
ing details with high specificity so that they can
be mnemonically discriminated from other simi-
lar memories (Ngo et al., 2021). Pattern separa-
tion aids mnemonic discrimination by reducing the
degree of representational similarity among over-
lapping experiences (Ngo et al., 2021). On the
contrary, pattern completion is a process that takes
out a pattern fragment and fills in the remaining
attributes (Kumaran et al., 2016). In short, pattern
completion enables the recapitulation of an entire
event from a partial cue (Ngo et al., 2021).

3.3 Connecting Episodic Memory Retrieval
with RE Counterfactual Generation

Due to the entity-centric nature (Zhang et al., 2023),
i.e., the given entities cannot be altered, the gen-
eration of RE counterfactuals can be mimicked by
performing pattern separation and pattern com-
pletion computations on entities to retrieve similar
episodic memories.

Specifically, the entity’s attributes, which deter-
mine its usage scenarios and states, are critical
to the mnemonic discrimination, thus we define
pattern separation for our task as: PS is used to de-
compose the attributes of the given entities. More-
over, the entity’s attributes serve as partial cues for
reconstructing complete scenarios, and we define
pattern completion as: PC is used to associate the
attributes between the given entities and then rea-
son corresponding scenarios. Below we present
these two functions.

3.3.1 Pattern Separation (PS) Function
Since the essence of pattern separation is to ex-
tract distinctive properties between similar episodic
memories, the design of the PS function should pay
more attention to the discriminative property of
the entity. To this end, we define three attributes
for the entities in context: form, usage, and pur-
pose 3, as shown in Fig. 3 (a). Formally, the pattern

3We keep the attributes consistent with ConceptNet (Speer
et al., 2017), a carefully designed knowledge graph, to ensure



separation function is defined as:

(a1i , a
2
i ) = PS((e1i , e2i ), α), (6)

where the PS function decomposes the head and
tail entity e1i and e2i into the attribute a1i and a2i
according to a specific aspect α, respectively.

3.3.2 Pattern Completion (PC) Function
Since pattern completion aims to compose relevant
scenarios between entities, the PC function should
pair the attribute of the head entity with the attribute
of the tail entity. Formally, the pattern completion
function is defined as:

si = PC(e1i .a1i , e2i .a2i ), (7)

where the PC function combines the attribute a1i
of the head entity e1i with the attribute a2i of the tail
entity e2i and then generates the scenario si .

3.4 Retrieving Episodic Memory from LLMs
This section presents our method to retrieve
episodic memory from LLMs by realizing the PS
and PC functions.

3.4.1 Implementing PS Function in LLMs
We employ the widely used in-context learning
technique to implement the PS and PC functions
in LLMs with examples. The entity is decomposed
into the ‘attribute: value’ pair, e.g., ‘form: fragile
entity’, ‘usage: food’, and ‘purpose: product’ of
the entity ‘eggs’, as shown in blue spans in Fig. 3
(b). The learning process can be formalized as:

(a1r , a
2
r) =Mllm(PS((e1r , e2r), α)), (8)

where the PS function is realized by using an
in-context example, andMllm is a specific LLM
which decomposes the request entities e1r and e2r
into attributes a1r and a2r according to a specific
aspect α by imitating PS. It is worth noting that
LLMs can automatically adjust α based on the en-
tity’s context. The detail is given in Appendix A.4.

3.4.2 Implementing PC Function in LLMs
To reconstruct a reasonable scenario using entities’
attributes, we utilize the chain-of-thought (CoT)
approach (Wei et al., 2022) to constrain LLMs with
the intermediate processes. For example, given the
‘fragile’ attribute of ‘eggs’ and the ‘package’ at-
tribute of ‘box’, the reasoning process ‘eggs should
be moved into box to prevent them from breaking’

the generality and diversity of episodic memory.

Dataset Train Dev Test Relation
SemEval 7200 800 2715 19
TACRED 68124 22631 15509 42
ACE2005 576 192 1607/2015/2680 6

Table 1: Statistics of experimental dataset. Note that the
vague relation ‘Other’ in SemEval and ‘no_relation’ in
TACRED are excluded during the generation.

takes into account the attributes of two entities, as
shown in the orange spans of Fig. 3 (b).

Furthermore, to ensure that the attribute combi-
nation and the reconstructed scenario are reason-
able, we require the reconstructed first scenario
to be equivalent to the original instance which is
supposed to be sensible. By doing this, the first
scenario can serve as a sample constraint to the
rational planning of LLMs. We formalize the learn-
ing process as:

sr =Mllm(PC(e1r .a1r , e2r .a2r)), (9)

where the PC function is also represented as an
in-context example, andMllm reconstructs the sce-
nario sr for the request entities’ attributes a1r and
a2r through imitating the planning and reasoning
process in PC.

After acquiring all scenarios, we encourage
Mllm to select a scenario which implies a rela-
tion different from the first scenario. Then, we let
Mllm determine the relation between entities in
the selected scenario. If it differs from the original
relation, it is considered as the potential relation.
Otherwise, it will be discarded to meet the counter-
factual requirement, i.e., ŷi ̸= yi.

4 Experiments

This section presents the experimental settings, re-
sults, and corresponding analyses.

4.1 Evaluation Protocol
Data Augmentation Evaluation Spurious cor-
relations are particularly prevalent in low-
resource (Nan et al., 2021) and out-of-domain
(OOD) (Calderon et al., 2022) settings. Therefore,
we use these two settings to validate counterfac-
tuals’ impacts on mitigating spurious correlations.
Following previous work (Li et al., 2022; Miao
et al., 2023), we employ SemEval (Hendrickx et al.,
2019) and TACRED (Zhang et al., 2017) for low-
resource, and ACE2005 (Grishman et al., 2005) for
OOD experiments, respectively. The statistics are
shown in Table 1. For details, see Appendix A.1.



Method 3% 5% 7% 10% 3% 5% 7% 10%

R-BERT R-RoBERTa

SemEval

Original 59.311.46 68.661.77 69.900.65 76.471.14 64.273.20 69.991.84 72.371.72 78.271.07

Synonym Rep. 60.061.15 69.571.80 72.001.27 77.941.76 62.893.38 71.243.73 72.573.76 78.510.74
Back Trans. 56.681.69 64.022.28 67.242.56 75.531.53 61.102.85 68.002.79 70.741.84 78.231.13
BERT-MLM 62.002.38 67.971.51 70.561.05 77.240.90 63.903.69 70.283.06 71.611.84 77.651.43

MICE 60.740.47 70.931.79 72.200.68 77.401.33 66.261.24 72.911.46 74.861.00 78.710.55
AutoCAD 62.091.39 71.181.36 72.301.49 77.860.44 66.980.79 74.171.91 75.261.04 78.781.43
CoCo 62.241.10 69.971.61 70.902.10 77.400.66 65.572.73 74.162.16 74.760.71 78.400.88

CF-CoT 63.081.43 70.520.90 72.270.85 76.370.40 64.321.35 72.950.63 74.050.99 78.050.68

PSPC (Ours) 66.911.46 72.110.78 73.621.02 78.170.65 68.611.37 75.151.48 75.720.83 79.201.09
TACRED

Original 15.591.41 23.971.63 30.161.33 35.651.39 21.390.71 32.251.41 34.411.40 40.130.77

Synonym Rep. 18.240.43 24.861.49 29.340.83 35.360.57 21.730.69 31.241.31 32.702.06 40.171.05
Back Trans. 17.671.61 25.411.37 28.041.92 35.421.08 22.080.79 32.081.95 33.781.45 40.790.98
BERT-MLM 18.451.08 23.641.65 27.561.26 33.341.21 22.451.35 30.701.11 32.090.50 37.960.64

MICE 17.482.43 24.730.67 30.401.43 36.152.08 22.282.23 32.201.23 36.121.68 41.100.32
AutoCAD 17.291.64 25.511.64 29.950.89 36.830.98 21.471.26 31.721.35 35.361.30 40.780.47
CoCo 17.171.25 24.390.92 29.251.58 35.611.01 22.091.32 31.321.57 34.171.65 40.630.84

CF-CoT 17.510.84 27.761.94 30.780.39 35.890.85 23.182.50 34.331.24 35.430.63 40.260.85

PSPC (Ours) 19.161.51 28.191.43 32.441.79 36.870.80 25.241.24 35.331.14 36.420.77 41.171.05

Table 2: Results for data augmentation evaluation under low-resource settings on SemEval and TACRED. The
values in bold and those underlined are the best and the second best scores. The subscript denotes the standard
deviation.

Following previous work (Zhang et al., 2023;
Miao et al., 2023), we employ R-BERT4 (Wu and
He, 2019) and RoBERTa5 (Liu et al., 2019) as base
models for relation extraction. These base mod-
els are applied to the original and augmented data
generated by various counterfactual methods.

All hyper-parameters except the epoch are set
to their default values. We use the validation set
to select the optimal value for the epoch setting of
the base model and report the mean and standard
deviation of micro-F1 scores over 5 random seeds.

Human Evaluation We conduct the human
study (Hao et al., 2021; Treviso et al., 2023) as
a subjective assessment of commonsense evalua-
tion. Specifically, we randomly select 100 gener-
ated counterfactuals from SemEval for each com-
pared method and ask three annotators to give their
scores based on the rationality of relations between
entities. The scores follow a 3-point scale: reason-
able (2), marginally reasonable (1), and not reason-
able (0). Refer to Appendix A.2 for the criteria.

Baselines We employ three types of compara-
tive methods as baselines. The first type is the

4https://github.com/monologg/R-BERT
5https://huggingface.co/roberta-base

conventional methods, including SYNONYM RE-
PLACEMENT (Zhang et al., 2015), BACK TRANS-
LATION (Sennrich et al., 2015), and BERT-
MLM (Jiao et al., 2019). The second type is the
small language model (SLM) based counterfac-
tual generation methods, including MICE (Ross
et al., 2021), AUTOCAD (Wen et al., 2022),
COCO (Zhang et al., 2023). The third type is the
large language model (LLM) based counterfactual
generation method CF-COT (Li et al., 2023b).

To ensure fairness in terms of quantity, all com-
pared methods perform data augmentation once at
most for each instance.

Implementation Details We utilize the API pro-
vided by the OpenAI6 to evaluate our proposed
mechanism. To prevent interference from version
updates, we choose gpt-3.5-turbo-0613 (GPT-3.5
for short) as a representative of LLMs to perform
all experiments for CF-CoT and our PSPC, and we
set the temperature to 0 for obtaining stable results.

Due to the space limit, the descriptions for
datasets and baselines and the detailed PSPC im-
plementations are given in Appendix A. Parameter
and sensitivity analysis are given in Appendix B.

6https://openai.com/

https://github.com/monologg/R-BERT
https://huggingface.co/roberta-base
https://openai.com/


Method WL→ BC WL→ BN WL→ NW WL→ BC WL→ BN WL→ NW

R-BERT R-RoBERTa

Original 70.202.13 72.032.27 69.031.91 74.311.25 72.451.47 73.461.73

Synonym Rep. 71.630.46 73.370.89 70.031.19 74.321.19 73.321.64 74.291.00
Back Trans. 71.860.84 73.520.78 69.560.63 75.541.36 73.420.53 74.960.78
BERT-MLM 71.420.69 72.850.95 70.141.01 74.881.01 72.890.12 74.241.15

MICE 71.181.11 72.601.63 69.471.60 74.640.99 72.810.81 74.980.38
AutoCAD 71.291.41 72.640.93 69.670.72 75.640.72 73.491.20 74.210.83
CoCo 70.761.36 72.021.03 69.491.38 75.281.52 72.411.47 74.650.82

CF-CoT 70.611.34 71.991.04 69.841.07 73.160.47 71.430.96 72.870.33

PSPC (Ours) 73.111.79 73.991.43 70.201.02 75.641.33 74.311.79 75.090.57

Table 3: Results for data augmentation evaluation under out-of-domain settings on ACE 2005.

Method 3% 5% 7% 10% 3% 5% 7% 10%

R-BERT R-RoBERTa

MICE 60.740.47 70.931.79 72.200.68 77.400.54 66.261.24 72.911.46 74.861.00 78.710.55

MICE w/ Random 62.041.06 70.181.32 72.561.17 75.700.56 65.342.64 73.312.00 74.741.11 77.781.04
MICE w/ CF-CoT 63.601.51 71.351.05 72.311.20 76.531.01 67.012.58 75.252.30 74.901.60 78.021.42
MICE w/ PSPC 65.100.86 72.101.23 73.141.01 77.481.15 67.761.86 75.861.60 75.531.26 78.890.99
AutoCAD 62.091.39 71.181.36 72.301.49 77.860.44 66.980.79 74.171.91 75.261.04 78.781.43

AutoCAD w/ Random 62.472.81 70.261.86 72.340.87 76.990.48 65.683.01 72.791.67 74.752.11 77.731.08
AutoCAD w/ CF-CoT 63.840.87 71.210.97 73.890.94 78.000.74 67.191.71 74.621.47 75.741.26 78.911.16
AutoCAD w/ PSPC 65.251.11 72.351.07 74.090.65 78.650.90 68.092.19 75.931.32 76.210.56 79.480.46

Table 4: Results of the synthetic experiment on SemEval.

4.2 Results for Data Augmentation Evaluation

The results for data augmentation evaluation under
the low-resource and out-of-domain settings are
shown in Table 2 and Table 3, respectively. From
the results, we have the following observations.

(1) Our proposed PSPC method achieves the
best performance with relatively small standard
deviations across all different settings. This clearly
demonstrates the capability of our episodic memory
mechanism and its realized functions in generating
counterfactuals for data augmentation.

(2) CF-COT, which is also an LLM-based coun-
terfactual method, is inferior to other baselines in
many cases. Note that the only difference between
CF-COT and ours 7 is the pattern separation and
pattern completion procedure in potential relation
discovery. This shows that an LLM is prone to
make errors when lacking proper guidance, but our
PS and PC functions can effectively lead the LLM
to recall similar scenarios around the entity pair.

(3) We observe that counterfactual augmentation
methods are generally more effective in alleviating
the impact of spurious correlations than conven-
tional ones under low-resource settings. However,

7The detailed comparison is provided in Appendix A.4.
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Figure 4: Results for human evaluation.

two conventional methods BACK TRANS. and
BERT-MLM perform the second best in most
cases under OOD settings. The reason might be
that the relations in ACE05 are coarse-grained and
not specific enough, which prevents counterfac-
tual methods from finding reasonable potential re-
lations.

4.3 Results for Human Evaluation

To evaluate whether the generated counterfactuals
conform to commonsense, we conduct the human
study. The average scores by the aforementioned
three annotators are calculated as the final common-
sense score for each method. The results are shown
in Fig. 4. We have the following observations.

(1) Our proposed PSPC method can discover po-



Case 1 CSU Stanislaus students take complaints to President’s door . Entity-Destination
MICE CSU Stanislaus students take complaints caused the President’s door . ✘ Cause-Effect
AutoCAD CSU Stanislaus students take complaints caused the President’s door . ✘ Cause-Effect
CF-CoT CSU Stanislaus students take complaints are placed in President’s door . ✘ Content-Container
PSPC CSU Stanislaus students take complaints about President’s door . ✔ Message-Topic
Case 2 The final chapter offers a theological survey of the use of the formula. Message-Topic
MICE The final chapter for a theological survey of the use of the formula. ✘ Instrument-Agency
AutoCAD The final chapter into a theological survey of the use of the formula. ✘ Entity-Destination
CF-CoT The final chapter reflects a theological survey of the use of the formula. ✘ Topic-Message
PSPC The final chapter is part of a theological survey of the use of the formula. ✔ Component-Whole

Table 5: Instances for case study. Entities are in orange and causal terms are in blue . ✔ denotes that the
generated counterfactuals comply with the commonsense requirements and ✘ is the opposite.

tential relations that conform the best to common-
sense. As can be seen, PSPC is the only method
getting a score higher than 1, i.e., beyond the level
of ‘marginally reasonable’.

(2) The LLM-based model CF-COT still lacks
the ability to generate commonsense counterfac-
tuals. The SLM-based models MICE and AUTO-
CAD perform the worst in this experiment since
their post-processing filtering mechanism cannot
provide a sufficient commonsense guarantee during
generation.

4.4 Empower SLM based Methods with PSPC
To further validate the rationality of the potential re-
lations generated by our PSPC method, we design
a synthetic experiment by examining its relations’
impact on SLM based methods. Specifically, we
first obtain the potential relations from PSPC, and
we then let MICE and AUTOCAD conduct con-
trolled generation of the causal term using GPT-2 as
the editor without applying their filtering strategies,
e.g., eggs were (entity-origin) <mask> a box where
the ‘entity-origin’ relation is provided by PSPC.
The results are shown in Table 4, from which we
can draw the following conclusions.

• The relations from PSPC can provide effec-
tive guidance for current SLM methods. Both
MICE and AUTOCAD get remarkable im-
provements under all settings, and the en-
hancements are particularly pronounced on
sparse data. This proves that the SLM based
counterfactual methods can overcome their
dependency on filtering mechanisms as long
as they get proper potential relations.

• Small language models can be fine-tuned with
flexibility, and thus they are more adept at ad-
dressing various issues in downstream tasks.
Meanwhile, large models possess knowledge

that small models lack. Therefore, the cooper-
ation between a SLM based method and our
PS and PC functions might be a promising
way. For example, on the setting of 5%-10%,
AUTOCAD W/ PSPC outperforms PSPC us-
ing GPT-3.5 (the results in Table 2).

4.5 Case Study
We randomly select two samples from SemEval to
have a close look. Table 5 shows the original and
augmented instances by different methods. Clearly,
our counterfactuals conform to commonsense and
align well with labels. In contrast, the compared
methods may produce unreasonable samples and
relations. For example, in Case 1, complaints can-
not ‘caused’ the door for MICE and AUTOCAD.
In Case 2, there seems to be a very low probability
for CF-COT to form the Topic-Message relation
between ‘chapter’ and ‘theological survey’.

5 Conclusion

In this paper, inspired by cognitive neuroscience,
we propose a novel neuromorphic mechanism to
align LLMs with humans during the experience
gaining process in counterfactual generation for re-
lation extraction. We realize this mechanism with
the pattern separation and pattern completion func-
tions which first decompose entities into attributes
and then combine the attributes to reconstruct a sce-
nario. Our method enables the retrieval of entities’
scenarios from the model’s extensive memory, and
thus provides factual basis for the relation between
entities of the generated counterfactual.

Extensive experiments prove the effectiveness
of our proposed mechanism and its implemented
functions. We believe this is an interesting explo-
ration of neuroscience based researches and wish
it can inspire more studies along this direction.



Limitations

Despite the episodic memory retrieval (EMR)
mechanism along with the pattern separation and
pattern completion (PSPC) functions can effec-
tively enhance the conformity to commonsense for
the generated RE counterfactuals by LLMs, this
mechanism relies on the vast knowledge related
to episodic memories within LLMs and the promi-
nent reasoning and planning capabilities of these
models.

Ethics Statement

Our work aims to explore the commonsense coun-
terfactual generation, which is entirely at the
methodological level and therefore does not have
any negative social impact.
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A Implementation Details

A.1 Datasets
Low-resource settings. We utilize two of the
most popular RE datasets for low-resource set-
tings, including SemEval (Hendrickx et al., 2019)
and TACRED (Zhang et al., 2017). SemEval
comprises 9 bidirectional relations and 1 other
class. TACRED contains 41 relation types and
1 no_relation class. Due to their belonging to in-
domain datasets (Zhang et al., 2023), they satisfy
the independent and identically distributed (i.i.d.)
assumption. Meanwhile, the ratio of the training
set to the test set is significantly larger than 1 (Se-
mEval at 2.65, and TACRED at 3.01), resulting in
a high likelihood of spurious correlations in the test
set being present in the training set. In this situa-
tion, the spurious correlations can assist the model
in finding shortcuts and improving accuracy (Sen
et al., 2021). For example, the model relies on non-
causal words that appear in both the training and
test sets for association. Unfortunately, when the
counterfactuals block spurious correlations, they
may not help the model in terms of accuracy and
could even have a counterproductive effect under
such an i.i.d. scenario (Kaushik et al., 2019; Sen
et al., 2021; Wang and Culotta, 2021; Geva et al.,
2022). To accurately validate the effects of gen-
erated counterfactuals, we introduce the continu-
ous low-proportion low-resource settings (Li et al.,
2022; Miao et al., 2023), including 3%, 5%, 7%,
and 10%. For example, we randomly select 3%
instances from the training set. Such low-resource
settings can provide two assurances: (1) The issue
of spurious correlations in low-resource settings is
significant. (Nan et al., 2021), ensuring that there
is room for counterfactuals to be effective. (2)
The overlap of spurious correlations between the
training and test sets is relatively fewer, ensuring
that eliminating spurious correlations will not bring
negative consequences. Therefore, low-resource
settings are suitable for evaluating the effectiveness
of counterfactuals (Miao et al., 2023).

Out-of-domain (OOD) settings. The spurious
correlations under this scenario can be defined as
correlations between domain-specific words and
labels (Calderon et al., 2022). Such correlations
cannot assist the model in establishing associa-
tions between cross-domains and may even have
a counterproductive effect. Therefore, OOD eval-
uation can be used to validate the effectiveness of
counterfactuals in mitigating such spurious corre-

lations. The most popular OOD dataset in RE is
ACE 2005 (Grishman et al., 2005), which contains
6 relatively coarse-grained relation types. In line
with previous work (Miao et al., 2023), we select
four sub-datasets from different domains, includ-
ing weblogs (WL), broadcast conversation (BC),
broadcast news (BN), and newswire (NW). Specifi-
cally, we employ the WL sub-dataset as the training
set and other sub-datasets as test sets, respectively,
which can be formalized as WL→BC, WL→BN,
and WL→NW.

A.2 Rules of Human Evaluation

To provide an intuitive explanation, we utilize ex-
amples for illustration. Suppose the original ex-
ample is cheese is flowed into food banks. The
relation between cheese and food banks is entity-
destination, depending on the causal term flowed
into. The generated counterfactuals are scored
based on the following rules.

(1) Not Matching: If the flipped relation does
not match the replaced causal term, it should be
given a score of 0. For example, the counterfactual
of cheese is donated to food banks, with the new
relation content-container. The content-container
relation cannot be triggered by the causal term do-
nated to. Such an erroneous example introduces
noise and negatively affects the model training.

(2) Not Reasonable: If the flipped relation con-
tradicts the entities in terms of commonsense, it
should be given a score of 0. For example, the
counterfactual of cheese is caused by food banks,
with the new relation effect-cause. In our under-
standing, there is no causal relationship between
cheese and food banks, hence it is not reasonable.

(3) Marginally Reasonable: If the flipped re-
lation is somewhat associated with the properties
of the entities but not entirely accurate, it should
be given a score of 1. For example, the counterfac-
tual of cheese is contained in food banks, with the
new relation content-container. Although the food
banks can be regarded as a container for storing
food, it is not commonly expressed in that way.

(4) Reasonable: If the flipped relation aligns
with the properties of the entities, it should be given
a score of 2. For example, the counterfactual of
cheese is from food banks, with the new relation
entity-origin. Individuals can receive food from the
food banks, hence the counterfactual is reasonable.



A.3 Baselines

We provide implementation details of the baselines,
including conventional methods:

• SYNONYM REPLACEMENT (Zhang et al.,
2015) is a synonym substitution based method
that replaces 30% words in a sentence with
their synonyms from WordNet (Miller, 1995).

• BACK TRANSLATION (Sennrich et al., 2015)
is a translation based method that first trans-
lates sentences into another language and then
back-translates them to the original language.

• BERT-MLM (Jiao et al., 2019) is a BERT-
based (Devlin et al., 2018) substitution
method that first masks 30% context words
(excluding entities and causal terms) with
[MASK], then fills in the different top words
predicted by BERT.

Small language model (SLM) based counterfactual
generation methods:

• MICE (Ross et al., 2021) first identifies causal
terms based on the gradient contributions ob-
tained from the post-enhanced RE base model.
Then it employs a trained editor to replace the
identified causal terms with proper words to
flip the original relation to the potential one.

• AUTOCAD (Wen et al., 2022) is similar to
MICE, but it introduces the unlikelihood strat-
egy (Welleck et al., 2019) for the editor, to
ensure the editor does not generate the causal
terms consistent with the original relation.

• COCO (Zhang et al., 2023) exploits syntac-
tic and semantic dependency graphs to dis-
cover substitutable causal terms from other
sentences with different relations and substi-
tutes the original relation simultaneously.

The employed editors for the above methods are all
uniformly based on GPT-2 (Radford et al., 2019).
The large language model (LLM) based counter-
factual generation method:

• CF-COT (Li et al., 2023b) requests LLMs to
generate RE counterfactuals through the coun-
terfactual CoT based on the standard pipeline.
Compared with our method, the main distinc-
tion lies in its absence of the PSPC approach
while keeping the rest consistent.

A.4 PSPC Implementations

The complete implementation process of PSPC is
illustrated in Table 9. To ensure that LLMs fully
comprehend our intentions, we first provide the
task definition and instructions before in-context
examples. The instruction aligns with Section 3.1,
breaking down the overall process into six steps:
(1) causal term identification, (2) entity deconstruc-
tion, (3) scenario reconstruction, (4) decisive sce-
nario identification, (5) potential relation uncov-
ering, and (6) causal term replacement. For each
step, the instruction provides a detailed explanation.
Afterward, we provide all the candidate relations
depending on the given dataset for LLMs to select
from. Most importantly, we design two in-context
examples based on a fabricated instance. For Se-
mEval, the fabricated instance is defined as: eggs
are moved into a box. Note that we only need to
fabricate a suitable instance for each dataset.

In example 1, we steer the operation process of
LLMs explicitly step by step. After causal term
identification, we deconstruct the attributes of eggs
and box into three aspects, i.e., form, usage, and
purpose. For example, eggs is decomposed as:
form: fragile entity, usage: as food, and purpose:
farm product, as shown in the blue spans of Table 9.
These three aspects are referenced from Concept-
Net (Speer et al., 2017), possessing broad gener-
ality among entities. Therefore, they are applied
to all datasets. Benefiting from LLMs’ extensive
knowledge and reasoning capabilities, even when
encountering unexpected entities, they can adapt
by replacing the defined aspects with other appro-
priate aspects. For example, LLMs deconstruct
farmer into the entity-adaptive aspects: occupation:
agricultural worker, action: erecting, as shown in
Table 6. LLMs can ultimately generate common-
sense counterfactuals by adjusting the types and
quantity of aspects.

Subsequently, we provided a detailed description
of the scenario reconstruction process, as shown
in the orange spans of Table 9. Specifically, we
pair the decomposed attributes between entities
and form three plausible scenarios. To construct
scenarios that fit the attributes of the entities, we
utilize chain-of-thought (CoT) (Wei et al., 2022)
technology to deduce suitable scenarios starting
from the attributes. For example, we pair the prop-
erty form: fragile entity of eggs and the property
usage: package something of box, then we can
infer the reasonable scenario: protective purpose:



Input: <e1> farmer </e1> erected the <e2> disguise </e2>
Entities: farmer, disguise
Relation: producer-product
Identify causal term: the context word “erected” is causally related to the relation “producer-product”.
Deconstruct entities: based on the attributes of the entities, “farmer” can be deconstructed into the several primary proper-
ties: occupation: agricultural worker , action: erecting ; “disguise” can be deconstructed into the several primary properties:

form: a disguise , usage: conceal identity .
......
Output: <e1> farmer </e1> uses the <e2> disguise </e2>
New Relation: agency-instrument

Input: <e1> engine </e1> powered a limited-production Mustang <e2> model </e2>
Entities: engine, model
Relation: component-whole
Identify causal term: the context word “powered” is causally related to the relation “component-whole”.
Deconstruct entities: based on the attributes of the entities, “engine” can be deconstructed into the several primary properties:
function: provide power , usage: in a vehicle , purpose: generate motion ; “model” can be deconstructed into the several

primary properties: type: limited-production , usage: as a car , purpose: represent a specific design .
......
Output: <e1> engine </e1> is used by a limited-production Mustang <e2> model </e2>
New Relation: instrument-agency

Table 6: The examples of aspect adaption in LLMs. The blue spans denote our defined aspects. The orange spans
denote the aspects modified by LLMs to adapt to entities.

put eggs into a box, based on the analysis that eggs
are fragile and the box can provide protection to
prevent them from breaking. We do not specify nor
can we specify the matching order of attributes, but
the plausible scenarios themselves serve as target
constraints. LLMs can autonomously decide on
pairing schemes based on the situation, as long as
they can form plausible scenarios. Additionally,
to balance computational complexity and diversity,
we set the number of reconstructed scenarios to 3.

Afterward, to ensure that the reconstructed sce-
narios are relevant to the instance yet imply differ-
ent relations, we introduce decisive scenario identi-
fication and potential relation uncovering, as shown
in the green spans of Table 9. We stipulate that
LLMs must construct a scenario that adapts to the
original instance and identify it. This constraint
can guide pattern separation (PS) and pattern com-
pletion (PC) towards instance-relevant directions.
After excluding this anchor scenario, we require
LLMs to focus on another specific promising sce-
nario, making it more likely to uncover a common-
sense relation. We demonstrate the effectiveness of
this strategy in supplementary experiments. Finally,
we request LLMs to replace the identified causal
term and satisfy the new relation.

To avoid the singularity in scenario selection,
such as only selecting the second scenario, we intro-
duce Example 2 to choose another scenario outside
of the decisive scenario, while keeping the previ-
ous content consistent. Additionally, multiple ex-

amples can serve to standardize the format. In the
counterfactual generation phase, we concatenate
the input instance’s sentence, entities, and relation
after the in-context examples. LLMs will output
the processed sentence and new relation based on
the defined process above.

To ensure a fair comparison with CF-CoT (Li
et al., 2023b), in the specific implementations, we
only removed the pattern separation (PS) and pat-
tern completion (PC) related processes while keep-
ing other contents unchanged, as shown in Table 10.
Furthermore, we provide a detailed example con-
trasting the differences in inference processes be-
tween PSPC and CF-COT, as shown in Table 11.
In the inference process of CF-CoT, LLMs take a
shortcut by simply reversing the relation. Due to
the strong semantic correlation between reversed
relations, LLMs fail to perceive the subtle differ-
ences, resulting in the incorrect causal term replace-
ment that does not match the relation. While in
the inference process of PSPC, under the guidance
of reconstructed scenarios, LLMs uncover the po-
tential relation that satisfies entity properties and
generate a commonsense counterfactual.

B Supplementary Experiments

B.1 PSPC Parameter Analysis

B.1.1 Aspect Quantity Analysis
To study how the quantity of aspects affects experi-
mental performance, we gradually increase the de-



Deconstruct entities: Based on the attributes of the entities, “eggs” can be deconstructed into several primary properties:
form: fragile entity , usage: as food , purpose: farm product , function: hatch chick , craft: make handcraft ; “box” can be

deconstructed into several primary properties: form: a container , usage: package something , purpose: preserve products ,

function: keep dry , craft: organize items.

Reconstruct the first scenario: Based on the “form: fragile entity” property of “eggs” and the “usage: package something”
property of “box”, “eggs” should be moved into a “box” to prevent them from breaking, hence we can reconstruct the scenario:
protective purpose: put eggs into a box.

Reconstruct the second scenario: Based on the “purpose: farm product” property of “eggs” and the “form: a con-
tainer” property of “box”, “eggs” should be contained in a “box” for preservation, hence we can reconstruct the scenario:
preservation purpose: eggs are kept in a box.

Reconstruct the third scenario: Based on the “usage: as food” property of “eggs” and the “purpose: preserve product”
property of “box”, “eggs” should be taken out from the “box” before making food, hence we can reconstruct the scenario:
consumption purpose: take out eggs from the box.

Reconstruct the fourth scenario: Based on the “function: hatch chick” property of “eggs” and the “function: keep dry”
property of “box”, “eggs” should be saved in “box” for keeping dry to hatch chicks, hence we can reconstruct the scenario:
hatching purpose: eggs are saved in a box.

Reconstruct the fifth scenario: based on the “craft: make handcraft” property of “eggs” and the “craft: organize items” property
of “box”, “eggs” should be taken out from the storage “box” before making handcrafts, hence we can reconstruct the scenario:
production purpose: eggs are taken from the box.

Table 7: The pattern separation (PS) and pattern completion (PC) processes of the full set of aspects. The blue spans
represent the defined aspects. The orange spans represent the reconstructed scenarios.
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Figure 5: The F1-score performance of aspect quantity analysis in SemEval. The horizontal axis represents the
number of aspects or reconstructed scenarios in in-context examples.

fined aspect in in-context examples. To validate the
trend thoroughly, we supply two more aspects after
the three already-defined aspects in Table 9. We
demonstrate the pattern separation (PS) and pattern
completion (PC) processes of the full set of aspects
in Table 7. In the analysis process, we sequentially
add the quantity of aspects, corresponding to an
increase in the number of reconstructed scenarios.
The trend of experimental performance is shown in
Figure 5. The trend shown in the line graph indi-
cates that as the number of aspects increases, the
performance of LLMs initially rises gradually, but
after a certain point, it starts to decline. Various
aspects can provide a more comprehensive descrip-
tion of entities, but there may also be redundancy
among aspects. Too many aspects can have the op-

posite effect. For example, there is a clear overlap
between the usage aspect and the function aspect.
Therefore, when defining aspects, both diversity
and independence should be considered.

B.1.2 Instance Quantity Analysis

To study how the quantity of in-context instances
affects experimental performance, we gradually in-
crease the instances in in-context examples. In ad-
dition to the instance we have already demonstrated
in Table 9, we additionally design two instances
with different relations. The pattern separation (PS)
and pattern completion (PC) processes of these two
extra instances are shown in Figure 6. Following
the implementations of Section A.4, each instance
corresponds to two examples used to select the



Instance 1:
Input: <e1> man </e1> establishes the <e2> company </e2>
Entities: man, company
Relation: producer-product
Deconstruct entities: Based on the attributes of the entities, “man” can be deconstructed into several primary properties:
form: social member , usage: use tools , purpose: create value ; “company” can be deconstructed into the several primary

properties: form: an organization , usage: produce product , purpose: make money.
Reconstruct the first scenario: Based on the “form: social member” property of “man” and the “form: an organization”
property of “company”, “man” can be employed to become a member of “company”, hence we can reconstruct the scenario:
employment purpose: man become a member of a company.

Reconstruct the second scenario: Based on the “usage: use tools” property of “man” and the “usage: produce prod-
uct” property of “company”, “man” can utilize “company” to produce a product, hence we can reconstruct the scenario:
utilization purpose: man utilizes a company.

Reconstruct the third scenario: Based on the “purpose: create value” property of “man” and the “purpose: make money”
property of “company”, “man” can establish “company” to make money to create value, hence we can reconstruct the scenario:
establishment purpose: man establish a company.

Instance 2:
Input: <e1> accident </e1> is cased by the <e2> rumor </e2>
Entities: accident, rumor
Relation: effect-cause
Deconstruct entities: Based on the attributes of the entities, “accident” can be deconstructed into several primary properties:
form: unexpected event , usage: cause injury , purpose: alert people ; “rumor” can be deconstructed into the several primary

properties: form: unverified report , usage: incite emotion , purpose: spread information.
Reconstruct the first scenario: Based on the “form: unexpected event” property of “accident” and the “purpose: spread
information” property of “rumor”, “accident” can be integrated into “rumor” for spreading the event, hence we can reconstruct
the scenario: integration purpose: accident is a part of the rumor.
Reconstruct the second scenario: Based on the “usage: cause injury” property of “accident” and the “usage: incite emo-
tion” property of “rumor”, “accident” can be triggered by “rumor” inciting emotion, hence we can reconstruct the scenario:
incitement purpose: accident is triggered by rumor.

Reconstruct the third scenario: Based on the “purpose: alert people” property of “accident” and the “form: unverified report”
property of “rumor”, “accident” can be described in “rumor” report to alert people, hence we can reconstruct the scenario:
warning purpose: accident is described in rumor.

Table 8: The pattern separation (PS) and pattern completion (PC) processes of two additional instances. The
blue spans represent the deconstructed properties. The orange spans represent the reconstructed scenarios.
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Figure 6: The F1-score performance of instance quantity
analysis in SemEval. The horizontal axis represents the
number of instances in in-context examples.

other two scenarios apart from the decisive sce-
nario, as shown in Table 9. During the analysis pro-
cess, we sequentially superimpose instances in the
in-context examples, and the experimental results
are shown in Figure 6. When adding the second
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Figure 7: The F1-score performance of instance con-
straint analysis in SemEval.

instance, LLMs show a significant improvement
in most cases, but when adding the third instance,
the improvement diminishes. The trend shown in
the line graph illustrates that diverse instances can
enhance the performance of our PSPC approach
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Figure 8: The F1-score of aspect sensitivity analysis
in SemEval. The lines in the graph indicate the result
fluctuation between each group.

in LLMs, but this improvement may not be con-
tinuous. Meanwhile, the increase in instances will
significantly increase computational costs.

B.1.3 Instance Constraint Analysis
To validate the effectiveness of the instance con-
straint, which is the scenario reconstruction corre-
sponding to the original instance, as shown in the
green spans of Table 9, we conduct a comparative
analysis. Specifically, we replace the decisive sce-
nario with another plausible one that does not align
with the original relation and remove the process
of decisive scenario identification. The results are
shown in Figure 7. We can observe that without this
strategy, the performance of LLMs significantly de-
creases. Through the observations of the generated
data, we find that the absence of this strategy re-
sults in a significant quantity decrease in the valid
counterfactuals generated by LLMs. The main rea-
son is the lack of an exclusion process; LLMs tend
to choose the original relation as the potential one.

B.2 PSPC Sensitivity Analysis
To test the sensitivity of our PSPC method to imple-
mentation details, we analyze it in three respects:
vocabulary, sentences, and examples. Ultimately,
the experimental results show that it maintains sta-
ble and outstanding performance across different
implementation approaches, which demonstrates
that the effectiveness of our method stems from the
strategy rather than implementation bias.
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Figure 9: The F1-score of expression sensitivity analysis
in SemEval. The lines in the graph indicate the result
fluctuation between different editing versions.

B.2.1 Aspect Sensitivity Analysis
To test the sensitivity of aspect terms, we modi-
fied the examples by replacing the aspect terms
with their synonyms8. We select two synonyms
for each aspect term, appearance and structure for
the form aspect, application and convention for
the usage aspect, intent and target for the purpose
aspect. Then, we divide these aspect terms into
three groups. The first group consists of the orig-
inal aspect terms: form, usage, and purpose. The
second group consists of the first synonym for each
aspect: appearance, application, and intent. The
third group consists of the second synonym for
each aspect: structure, convention, and target. The
experimental results for each group are shown in
Figure 8. In all configurations, LLMs exhibit only
minor fluctuations under the guidance of our PSPC
method. The maximum decrease is only 0.91, and
in most cases, there is still room for improvement.
This suggests that our method is not sensitive to
the choice of aspect terms.

B.2.2 Expression Sensitivity Analysis
To test the sensitivity to sentence-level expressions,
we employ ChatGPT (OpenAI, 2022) to rewrite all
sentences in Table 9. Specifically, while maintain-
ing the format unchanged, we instruct ChatGPT to
rewrite all sentences while ensuring semantic con-
sistency. We conducted two times of rewrites. For

8https://www.thesaurus.com/browse/synonym

https://www.thesaurus.com/browse/synonym


First Second Third
60

62

64

66

68
66.91 66.66 66.66

(a) 3% Setting of R-BERT

First Second Third
62

64

66

68

70
68.61 68.94 68.75

(b) 3% Setting of R-RoBERTa

First Second Third
68

70

72

74

76

72.11

74.9
74.02

(c) 5% Setting of R-BERT

First Second Third
69

71

73

75

77

75.15
75.66 75.73

(d) 5% Setting of R-RoBERTa

Figure 10: The F1-score of instance sensitivity analysis
in SemEval. The lines in the graph indicate the result
fluctuation between different instances.

clarity, the initial state is labeled as the first state,
and the two rewrites are labeled as the second state
and the third state, respectively. The experimental
results are shown in Figure 9. Across all settings,
LLMs exhibit minor fluctuations. The maximum
decrease is just 0.64. This indicates that our method
is insensitive to sentence expression.

B.2.3 Instance Sensitivity Analysis
To test the sensitivity of instance selection in in-
context examples, we replace the original instance
with the two additional ones shown in Table 8 re-
spectively. For clarity, we label the original in-
stance as the first instance, and the other two in-
stances are labeled as the second and third instances
respectively. The results of the comparative ex-
periment are shown in Figure 10. The line chart
indicates that LLMs generally exhibit relatively
small fluctuations in most cases. The maximum
decrease is only 0.25, which indicates that LLMs
demonstrate overall stability. The scenario with
relatively large fluctuations is the 5% setting of
R-BERT, but these fluctuations represent growth.
This indicates that we have not yet found the most
suitable instances, and there is still significant room
for improvement.

B.3 Version Effectiveness Analysis
To verify the effectiveness of our PSPC method
across different versions of LLMs, we conduct tests
on various released versions of GPT-3.5 Turbo. In

addition to the gpt-3.5-turbo-0613 version used in
the experiments above, the additional versions we
considered are listed below in chronological order:

• The gpt-3.5-turbo-0301 is a snapshot of gpt-
3.5-turbo from March 1th 2023. It is an early
version of the model with relatively weak in-
ference and alignment capabilities.

• The gpt-3.5-turbo-instruct has similar capabil-
ities as GPT-3 era models. It is a versatile and
powerful tool that has significant potential to
transform professional workflows.

• The gpt-3.5-turbo-1106 is the GPT-3.5 Turbo
model with improved instruction following,
JSON mode, reproducible outputs, parallel
function calling, and more.

• The gpt-3.5-turbo-0125 is the latest GPT-3.5
Turbo model with higher accuracy at respond-
ing in requested formats and a fix for a bug
that caused a text encoding issue for non-
English language function calls.

We directly applied the content of Table 9 to re-
quest the above-mentioned models, and the exper-
imental results are shown in Figure 11. Through
observation, we can draw the following conclu-
sions: (1) Although no adjustments were made
for each version, our PSPC method presents sig-
nificant improvement across all released versions.
This sufficiently demonstrates the effectiveness of
our pattern separation (PS) and pattern comple-
tion (PC) strategies. (2) With version updates,
GPT’s counterfactual reasoning abilities gradually
improve. Nonetheless, our PSPC approach still
enables the model to generate higher-quality RE
counterfactuals. (3) From the performance of the
last two updates, it appears that GPT’s counter-
factual reasoning capability may have reached a
bottleneck.

C Causal Perspective Analysis

To gain a more intuitive understanding of the impor-
tance of counterfactuals and commonsense coun-
terfactuals, we first theoretically analyze the prob-
lem addressed by counterfactuals through a struc-
tural causal model (SCM) (Pearl and Mackenzie,
2018). Subsequently, through further causal analy-
sis, we explain why counterfactuals need to align
with commonsense and what problems may arise
if they violate the commonsense constraint.
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Figure 12: The structural causal model (SCM) of (a)
dataset collection process and (b) counterfactual gener-
ation process. Nodes in the graph represent variables,
and edges represent causal relationships between them.

Due to biases and limitations in dataset collec-
tion, neural networks are inevitably influenced by
spurious correlations. The collection process can
be illustrated as Fig. 12 (a), where each instance
is annotated to acquire a relation (X → Y ) and
contains several task-irrelevant words (X → I).
Although there is no causal relationship between
task-irrelevant words and relations (IHH→Y ), the in-
stances serve as a common cause (I ← X → Y ),
resulting in a statistically spurious correlation be-
tween them. In the example of eggs were removed
into a box, the correlation between word were or a

and relation entity-destination is a spurious corre-
lation. Counterfactuals emphasize decision bound-
aries by flipping the relations through replacing
causal terms (Treviso et al., 2023), thus mitigating
the influence of irrelevant words.

The RE counterfactual generation process can be
formalized as Fig. 12 (b), where new instances are
generated by causal term replacement (C → X)
and contain original entities (X → E). Further-
more, causal terms and entities jointly determine
the instances’ relations (C → Y ← E). If we
focus on the effects between entities and relations,
there exists a backdoor path containing two con-
founders (E ← X ← C → Y ). In an ideal state,
we only seek to model their direct causal relation-
ships (E → Y ), without being influenced by the
confounders, which can be formalized as:

P (Y |E) = P (Y |do(E)), (10)

where do represents the do-operator. Fortunately,
we can implement the do-operator by back-door
adjustment (Pearl, 2009), which can be represented
as:

P (Y |do(E)) =
∑
X

P (Y |E,X = x)P (X = x),

(11)



since X is a intermediate variable of C, the formula
can be transformed into:

P (Y |do(E)) =
∑
C

P (Y |E,C = c)P (C = c),

(12)
where P (Y |E,C = c) represents that the relation
distribution is the joint probability distribution of
entities and causal terms. In simple terms, this
formula only holds when considering the common-
sense constraint on entities, as we previously an-
nounced. If this constraint is violated, the process
is transformed into:

P̂ (Y |do(E)) =
∑
C

P (Y |C = c)P (C = c),

=
∑
C

P (Y,C = c),

(13)

where P̂ (Y |do(E)) is only related to C. There-
fore, counterfactuals that violate the commonsense
constraint will ultimately render entities ineffective,
while relations between entities should depend on
the semantics of causal terms and the entities them-
selves (Wang et al., 2022). For example, in the
erroneous counterfactual of eggs were produced by
a box, relation product-producer only depends on
causal term produced by, without considering en-
tity box cannot be a producer in a general context.



Task definition: Change the relation between entities based on minimal context editing.

Instruction: The process can be divided into the following six steps. (1) Identify causal term: Find the context words that are
causally related to the relation. (2) Deconstruct entities: Based on the attributes of the entities, deconstruct the entities into
several primary properties. (3) Reconstruct scenarios: Based on the deconstructed properties, reconstruct the scenarios that the
entities may constitute. (4) Identify the decisive scenario: Select a scenario that contributes the most to the relation. (5) Uncover
potential relation: Select another promising scenario and match the most suitable relation from the candidate relations. (6)
Replace causal term: Replace the identified causal term with suitable words to change the original relation to the potential one.
Candidate relations: message-topic, topic-message, entity-origin, origin-entity, entity-destination, destination-entity, content-
container, container-content, cause-effect, effect-cause, component-whole, whole-component, member-collection, collection-
member, instrument-agency, agency-instrument, product-producer, producer-product.

Example 1:
Input: <e1> eggs </e1> are moved into a <e2> box </e2>
Entities: eggs, box
Relation: entity-destination
Identify causal term: The context words “moved into” are causally related to the relation “entity-destination”.
Deconstruct entities: Based on the attributes of the entities, “eggs” can be deconstructed into several primary properties:

form: fragile entity, usage: as food, purpose: farm product; “box” can be deconstructed into several primary properties: form:

a container, usage: package something, purpose: preserve products.
Pair the properties between “eggs” and “box” to reconstruct three reasonable scenarios:
Reconstruct the first scenario: Based on the “form: fragile entity” property of “eggs” and the “usage: package something”

property of “box”, “eggs” should be moved into a “box” to prevent them from breaking, hence we can reconstruct the scenario:

protective purpose: put eggs into a box.

Reconstruct the second scenario: Based on the “purpose: farm product” property of “eggs” and the “form: a container”

property of “box”, “eggs” should be contained in a “box” for preservation, hence we can reconstruct the scenario: preservation

purpose: eggs are kept in a box.

Reconstruct the third scenario: Based on the “usage: as food” property of “eggs” and the “purpose: preserve product”

property of “box”, “eggs” should be taken out from the “box” before making food, hence we can reconstruct the scenario:

consumption purpose: take out eggs from the box.

Identify decisive scenario: The scenario “protective purpose: put eggs into a box” contributes the most to the relation

“entity-destination”.

Uncover potential relation: If we focus on another promising scenario “preservation purpose: eggs are kept in a box”, in the

scenario, entity 1 “eggs” is “content”, hence the relation should start with “content-”, entity 2 “box” is “container”, hence the

relation should be supplemented as “content-container”, hence the commonsense relation is “content-container”.
Replace causal term: To change the original relation to the potential one “content-container”, the identified causal term can be
replaced with “stored in”.
Output: <e1> eggs </e1> are stored in a <e2> box </e2>
New Relation: content-container

Example 2:
Input: <e1> eggs </e1> are moved into a <e2> box </e2>
Entities: eggs, box
Relation: entity-destination
Identify causal term: The context words “moved into” are causally related to the relation “entity-destination”.
......
Uncover potential relation: If we focus on another promising scenario “consumption purpose: take out eggs from the box”,

in the scenario, entity 1 “eggs” is “entity”, hence the relation should start with “entity-”, entity 2 “box” is “origin”, hence the

relation should be supplemented as “entity-origin”, hence the commonsense relation is “entity-origin”.
Replace causal term: To change the original relation to the potential one “entity-origin”, the identified causal term can be
replaced with “from”.
Output: <e1> eggs </e1> are from a <e2> box </e2>
New Relation: entity-origin

Exam (complete the remaining content and maintain consistency with the format of the above examples):

Table 9: The Implementations of PSPC in SemEval. The blue spans represent the pattern separation (PS) process.
The orange spans represent the pattern completion (PC) process. The green spans represent the process of
uncovering potential relations based on instance constraint and reconstructed scenarios.



Task definition: Change the relation between entities based on minimal context editing.

Instruction: The process can be divided into the following three steps. (1) Identify causal term: Find the context words that are
causally related to the relation. (2) Uncover potential relation: Select another commonsense relation from the candidate relations
for the entities. (3) Replace causal term: Replace the identified causal term with suitable words to change the original relation to
the potential one.
Candidate relations: message-topic, topic-message, entity-origin, origin-entity, entity-destination, destination-entity, content-
container, container-content, cause-effect, effect-cause, component-whole, whole-component, member-collection, collection-
member, instrument-agency, agency-instrument, product-producer, producer-product.

Example 1:
Input: <e1> eggs </e1> are moved into a <e2> box </e2>
Entities: eggs, box
Relation: entity-destination
Identify causal term: The context words “moved into” are causally related to the relation “entity-destination”.
Uncover potential relation: Apart from the original relation “entity-destination”, entity 1 “eggs” can be “content”, hence

the relation should start with “content-”, entity 2 “box” can be “container”, hence the relation should be supplemented as

“content-container”, hence another commonsense relation is “content-container”.
Replace causal term: To change the original relation to the potential one “content-container”, the identified causal term can be
replaced with “stored in”.
Output: <e1> eggs </e1> are stored in a <e2> box </e2>
New Relation: content-container

Example 2:
Input: <e1> eggs </e1> are moved into a <e2> box </e2>
Entities: eggs, box
Relation: entity-destination
Identify causal term: The context words “moved into” are causally related to the relation “entity-destination”.
Uncover potential relation: Apart from the original relation “entity-destination”, entity 1 “eggs” can be “entity”, hence the

relation should start with “entity-”, entity 2 “box” can be “origin”, hence the relation should be supplemented as “entity-origin”,

hence another commonsense relation is “entity-origin”.
Replace causal term: To change the original relation to the potential one “entity-origin”, the identified causal term can be
replaced with “from”.
Output: <e1> eggs </e1> are from a <e2> box </e2>
New Relation: entity-origin

Exam (complete the remaining content and maintain consistency with the format of the above examples, if no other commonsense
relation exists, use the original relation as the potential one):

Table 10: The CF-CoT Implementations in LLMs. The green spans represent the process of uncovering potential
relations.



Exam:
Input: The final <e1> chapter </e1> offers a <e2> theological survey </e2> of the use of the formula.
Entities: chapter, theological survey
Relation: message-topic

PSPC:
Identify causal term: the context word “offers” are causally related to the relation “message-topic”.
Deconstruct entities: Based on the attributes of the entities, “chapter” can be deconstructed into several primary properties:

form: a section of a book, content: information about a specific topic, purpose: provide knowledge; “theological survey” can

be deconstructed into several primary properties: form: a research paper, content: study of religious beliefs, purpose: analyze

and present findings.
Pair the properties between “chapter” and “theological survey” to reconstruct three reasonable scenarios:
Reconstruct the first scenario: Based on the “form: a section of a book” property of “chapter” and the “content: study of

religious beliefs” property of “theological survey”, the “chapter” should describe the “theological survey”, hence we can

reconstruct the scenario: informative purpose: chapter describes theological survey.

Reconstruct the second scenario: Based on the “content: information about a specific topic” property of “chapter” and the

“purpose: analyze and present findings” property of “theological survey”, the “chapter” should provide information about

the “theological survey”, hence we can reconstruct the scenario: informative purpose: chapter provides information about

theological survey.

Reconstruct the third scenario: Based on the “purpose: provide knowledge” property of “chapter” and the “form: a research

paper” property of “theological survey”, the “chapter” should contribute to the knowledge provided by the “theological

survey”, hence we can reconstruct the scenario: supportive purpose: chapter supports theological survey.

Identify decisive scenario: The scenario “informative purpose: chapter describes theological survey” contributes the most to

the relation “message-topic”.

Uncover potential relation: If we focus on another promising scenario “supportive purpose: chapter supports theological

survey”, in the scenario, entity 1 “chapter” is “component”, hence the relation should start with “component-”, entity 2

“theological survey” is “whole”, hence the relation should be supplemented as “component-whole”, hence the

commonsense relation is “component-whole”.
Replace causal term: To change the original relation to the potential one “component-whole”, the identified causal term can be
replaced with “is part of”.
Output: The final <e1> chapter </e1> is part of a <e2> theological survey </e2> of the use of the formula.
New Relation: component-whole

CF-CoT:
Identify causal term: the context word “offers” are causally related to the relation “message-topic”.
Uncover potential relation: Apart from the original relation “message-topic”, entity 1 “chapter” can be “topic”, hence the

relation should start with “topic-”, entity 2 “theological survey” can be “message”, hence the relation should be

supplemented as “topic-message”, hence another commonsense relation is “topic-message”.
Replace causal term: To change the original relation to the potential one “topic-message”, the identified causal term can be
replaced with “reflects”.
Output: The final <e1> chapter </e1> reflects a <e2> theological survey </e2> of the use of the formula.
New Relation: topic-message

Table 11: An example comparing the inference processes between PSPC and CF-CoT. The blue spans represent
the pattern separation (PS) process. The orange spans represent the pattern completion (PC) process. The
green spans represent the process of uncovering potential relations.


